Олигополия

Пример Z. Отраслевой спрос на продукцию характе­ризуется функцией Р = 100 - 0.5Q; в отрасли работают две максимизирующие прибыль фирмы А и В со следующими функциями затрат: ТСа = 20 + 0.75qa^2 и ТСь = 30 + 0.5qb^2.

Выведем уравнение реакции для фирмы А. Так как MRa = 100 - qa - 0.5qь и MCa = 1.5qa, то pa = max при 100 - qa - 0.5qb = 1.5 qa Þ qa = 40 - 0.2qb.

Аналогичные расчеты для фирмы В дают ее уравнение реакции: qb = 50 - 0.25qa.

Равновесные значения цены и объемов предложения определяются из следующей системы уравнений:

P = 100 - 0.5 (qa + qb),

qa = 40 - 0.2 qb, Þ qA* = 31.6, qb* = 42.1, P* = 63.2.

qb = 50 - 0.25qa.

В состоянии равновесия прибыли фирм соответственно равны: pa = 63.2 • 31.6 - 20 - 0.75 * 31.6^2 == 1228.2, pь = 63.2*42.1 - 30 - 0.5*42.1^2 = 1744.5.

Чтобы проследить за процессом установления равновес­ной цены в модели дуополии Курно, допустим, что сна­чала в отрасли работала только фирма А. Она установила монопольную цену Рм = 80 и выпускает qm = 40. Для фирмы В, решившей в та­кой ситуации войти в отрасль, функция спроса имеет вид Р = 100 - 0.5(40 + qb), а ее предельный доход определя­ется по формуле MRb = 80- qb. Прибыль фирмы В бу­дет максимальной, если 80 - qь = qb, т. е. при выпуске 40 ед. продукции. Такой же результат получается из уравнения реакции фирмы В. Вследствие этого рыночная цена снизится до 60 ден. ед. При такой цене объем пред­ложения фирмы А уже не обеспечивает ей максимальную прибыль, и она изменит объем выпуска в соответствии со своим уравнением реакции исходя из того, что фирма В выпускает 40 ед. продукции: q’a = 40 - 0.2*40 = 32. В результате цена возрастет до 64. Ответный ход фирмы В выразится в том, что она в соответствии со своим уравне­нием реакции предложит на рынок q’b = 50 - 0.25 • 32 = 42, сбивая тем самым цену до 63. После того как фирма А в очередной раз скорректирует свой выпуск,

qa’' = 40 - 0.2 * 42 = 31.6, в отрасли установится равновесная це­на 63.2.

Обобщение модели Курно. Используя предпосылки мо­дели дуополии Курно, можно построить модель ценообра­зования при любом числе конкурентов. Примем в целях упрощения, что у всех конкурентов одинаковые экономи­ческие затраты на единицу продукции: ACi = 1 = const; i = 1, , n. Тогда прибыль i-той фирмы равна pi, = Pqi, - lqi; так как Р = g - h å qi , то прибыль i-той фирмы можно представить в виде

pi = [g - h(q1 + q2 + . + qn)] qi - lqi = gqi - hqiq1 - hqiq2 - . - hqi^2 - . - hqiqn - lqi.

Она достигает максимума при

dpi / dqi = g - hq1 - hq2 - . - 2hqi - . - hqn - l = g - hq1 - hq2 - . - hqi - . - hqn - hqi - l = 0

Поскольку g -hq1 -hq2 - .- hqn = P, то условие максими­зации прибыли для отдельной фирмы имеет вид

Р - hqi= 1. (4.25)

Из равенства (4.25) следует qi* = (P-l)/h, т. е. в состоя­нии равновесия все фирмы будут иметь одинаковый объем реализации: å qi = nqi = Q, или

qi = Q / n = (g - P) / nh (4.26)

Это вытекает из допущения, что у всех фирм одинако­вые предельные затраты производства.

Подставив значение (4.26) в уравнение (4.25), получим значение равновесной цены как функции от числа одина­ковых по размеру фирм:

P* = l + hqi = l + h ((g - P*) / nh) Þ P* = (nl + g) / (n + 1)

При n = 1 получаем монопольную цену, a по мере увеличения п цена приближается к предельным издержкам.

4. Модель Штакельберга.

Равновесие в модели Курно до­стигается за счет того, что каждый из конкурентов меняет свой объем выпуска в ответ на изменение выпуска другого до тех пор, пока такие изменения увеличивают их при­быль. В модели Штакельберга предполагается, что один из дуополистов выступает в роли лидера, а другой — в роли аутсайдера. Лидер всегда первым принимает реше­ние об объеме своего выпуска, а аутсайдер воспринимает выпуск лидера в качестве экзогенного параметра. В этом случае равновесные объемы выпуска определяются не в ре­зультате решения системы уравнений реакции дуополистов, а на основе максимизации прибыли лидера, в формуле которой вместо выпуска аутсайдера находится уравнение его реакции. Определим равновесие Штакельберга в условиях примера Z.

Если лидером является фирма А, то ее выпуск опреде­ляется из равенства MRa = МСа. Общая выручка фирмы А с учетом уравнения реакции фирмы В равна: TRa = = Pqa = [100 - 0.5(qa + 50 - 0.25qa)]qa = 75qa - 0.375 qa^2; тогда MRa = 75 - 0.75qa. Следовательно, прибыль фирмы А будет максимальной при 75 - 0.75qa = 1.5qa. Отсюда qa = 33.33; qь = 50 - 0.25 * 33.33 = 41.66; P = 100 - 0.5(33.33 + 41.66) = 62.5; pa = 62.5 * 33.3 - 20 - 0.75*33.3^2 = 1230; pb = 62.5*41.7 - 30 - 0.5 * 41.7^2 = 1707.

Рис. 11 Линия реакции и

изопрофиты

Таким образом, в результате пассивного поведения фирмы В ее прибыль снизилась, а фирмы А возросла. Если бы фирмы поменялись ролями, то прибыль фирмы А рав­нялась бы 1189, а фирмы В — 1747.8.

Для наглядного сопо­ставления равновесия Кур­но с равновесием Штакель­берга линии реакции дуополистов нужно дополнить линиями равной прибыли (изопрофитами). Уравне­ние изопрофиты образует­ся в результате решения уравнения прибыли дуополии относительно ее вы­пуска при заданной вели­чине прибыли. По данным примера 4.7 на рис. 4.32 построены изопрофиты и линия реакции фирмы А. Чем ниже расположена изопрофита, тем большему размеру при­были она соответствует, так как ее приближение к оси аб­сцисс соответствует росту qa и уменьшению qb.

Наложив на рис. 11 аналогичный рисунок для фирмы В, получим рис. 12, на котором равновесие Курно отме­чено точкой С, а равновесие Штакельберга точкой Sa при лидерстве фирмы А и точкой Sb при лидерстве фирмы В.

Картель. Однако наибольшие прибыли олигополисты получат в случае организации картеля — явного или скрытого сговора о распределении объема выпуска с целью под­держания монопольной цены на данном рынке. В условиях рассматриваемого числового примера суммарная прибыль участников картеля определяется по формуле

på = [100 - 0.5(qA +qB)] (qA+qB) - 20 - 0.75qA^2 - 30 - 0.5qB^2 = 100qA+ 100qB -qAqB- - 1.25qA^2 - qB^2 - 50.

Рис. 12. Равновесие Курно и

равновесие Штакельберга.


Страница: