Нейросетевая реализация системы автономного адаптивного управления
Рефераты >> Программирование и компьютеры >> Нейросетевая реализация системы автономного адаптивного управления

Можно иначе сформулировать задачу построения ФРО. Приведем пример с системой «Пилот» [Диссер, Жданов9]. В математической модели спутника используются величины углового положения спутника и его производной , следовательно, очевидно, что всевозможные сочетания возможных значений этих величин (т.е. некоторая область на фазовой плоскости) необходимы для нахождения законов управления системой. Действительно, допустим система в момент времени t находится в состоянии и УС выбирает некоторое управляющее воздействие (включение одного из двигателей, например). Мы знаем, что в момент времени система окажется в некотором состоянии, соответствующем точке на фазовой плоскости с некоторой вероятностью , где - точка на фазовой плоскости, таким образом, можно говорить о некотором вероятностном распределении , заданном в фазовом пространстве и характеризующем предсказание поведения системы через интервал при выборе воздействия в момент времени t. Если бы параметров было недостаточно для описания законов управления, то функция распределения зависела бы еще и от других параметров, и при одних и тех же величинах принимала бы другие значения в зависимости от значений неучтенных параметров. Следовательно, УС не смогла бы найти никакого закона управления, поскольку система ищет статистически достоверную корелляцию между наблюдаемым состоянием ОУ, выбранным действием и состоянием ОУ через некоторый интервал времени. Законом управления здесь мы назовем совокупность функций распределения для каждого управляющего воздействия , где находится в некотором диапазоне. Найденный УС закон управления отобразится в некотором внутреннем формате в БЗ, причем он может быть получен в процессе обучения системы в реальных условиях прямо во время работы, либо на тестовом стенде, «на земле». Следовательно, можно сказать, что задача построения ФРО состоит в конструировании образов, соответствующих необходимому набору параметров, описывающих состояние системы, и их комбинациям, необходимым для нахождения закона управления. Нахождению таких образов может помочь математическая модель объекта управления, если таковая имеется.

3.4. Распознавание пространственно-временных образов.

Определение 3.4.1. Всякую совокупность значений реализации входного процесса в некоторые выбранные интервалы времени будем называть пространственно-временным образом (ПВО).

Отметим, что один нейрон способен распознавать (т.е. способен обучиться выделять конкретный ПВО среди всех остальных) только те ПВО, у которых единичное значение сигнала для каждой выбранной компоненты входного процесса встречается не более одного раза (пример изображен на верхнем графике рис. 3.4.1). Сеть нейронов можно построить так, что в ней будут формироваться любые заданные ПВО (нижний график рис. 3.4.1).

Рис 3.4.1.

4. База знаний.

Процесс накопления знаний БЗ в рамках методологии ААУ подробно рассмотрен в [Диссер], [Жданов4-8]. В данном разделе мы опишем лишь основные отличия от указанных источников.

Рассмотрим общий алгоритм формирования БЗ. Основная цель алгоритма состоит в накоплении статистической информации, помогающей установить связь между выбранными управляющей системой воздействиями на среду и реакцией среды на эти воздействия. Другая задача алгоритма состоит в приписывании оценок сформированным образам и их корректировки в соответствии с выходным сигналом блока оценки состояния.

Определение 4.1. Будем называть полным отсоединением ФРО от среды следующее условие: процессы и являются независимыми. Вообще говоря, в действующей системе, конечно же эти процессы зависимы, например, в простом случае без блока датчиков , но для введения некоторых понятий требуется мысленно «отсоединить» входной процесс и процесс среды.

Определение 4.2. Назовем временем реакции среды на воздействие число , где случайные величины и являются зависимыми при полном отсоединении ФРО от среды. Закономерностью или реакцией среды будем считать зависимость от .

Другими словами, время реакции среды это время, через которое проявляется, т.е. может быть распознана блоком ФРО, реакция на воздействие.

Пример 4.1. = . Очевидно, что здесь .

Определение 4.3. Назовем минимальной и максимальной инертностью среды минимальное и максимальное соответственно время реакции среды на воздействие для всех . Интервал будем называть интервалом чувствительности среды.

Заметим, что .

Введем совокупность образов

. (4.1)

Параметр n > 0 назовем запасом на инертность среды. Смысл состоит в том, что если обучен, в текущий момент времени распознан образ и УС выберет воздействие то с некоторой вероятностью через n шагов распознается образ . Аналогично введем образ


Страница: