Нейросетевая реализация системы автономного адаптивного управления
Рефераты >> Программирование и компьютеры >> Нейросетевая реализация системы автономного адаптивного управления

Как одну из моделей среды для исследований свойств ААУ мы предлагаем взять конечный автомат [КА]. КА является широко известным, хорошо изученным, понятным и удобным при моделировании среды объектом по следующим соображениям: 1) различные состояния среды естественным образом отображаются в состояния КА; 2) переходы из одного состояния среды в другое под воздействием УС и других объектов естественным образом отображаются в переходы КА между состояниями при чтении входного слова. Отметим, что среди известных и распространенных КА наиболее подходящими для модели являются автоматы Мура и недетерминированные автоматы Рабина-Скотта или НРС-автоматы. Правда, модели, основанные на первых, нуждаются в дополнительном введении стохастических источников, а НРС-автоматы нуждаются в модификации, поскольку реальные среды являются недетерминированными объектами. Более того, недетерминированность модели среды необходима для обучения УС. В самом деле, если бы реакция среды была полностью детерминированной и зависела только от воздействий на нее УС, то УС, найдя первый закон управления, использовала бы только его при выборе управляющих воздействий, так как по критериям системы управления лучше использовать хоть какой-нибудь закон управления и получить относительно гарантированный результат, чем продолжать поиски методом проб и ошибок. Получился бы замкнутый порочный круг: система воздействует на среду только одним способом, среда детерминированно реагирует на это воздействие, УС видит только одну реакцию (которая может быть не самой лучшей) и пытается вызвать только эту реакцию. Избежать таких «зацикливаний» можно посредством моделирования недетеминированной реакции среды.

Приведем определение автоматов Мура [КА] и введем модифицированные НРС-автоматы.

Определение 2.1. (Конечный) автомат Мура есть пятерка А = (Z, X, Y, f, h). Здесь Z – множество состояний, X – множество входов, Y – множество выходов, f – функция переходов, и h –функция выходов, - сюръективное отображение.

Автомат работает по следующему принципу. Если КА находится в некотором состоянии , то выход автомата определяется функцией выхода. Выход автомата интерпретируется в данном случае как реакция среды, которая, возможно, с некоторыми преобразованиями в блоке датчиков может быть подана на вход аппарата формирования и распознавания образов как двоичный вектор. В каждый момент времени автомат читает входное слово, которое интерпретируется как суммарное воздействие со стороны УС и других внешних объектов. Множество входов может быть шире чем множество допустимых воздействий на среду со стороны УС и включать в себя слова или команды, которые могут подаваться со стохастических источников, находящихся внутри среды. По прочитанному входному слову и функции переходов определяется состояние в следующий момент времени.

Определение 2.2. (Конечный) модифицированный недетерминированный автомат Рабина-Скотта (МНРС) есть семерка А = (Z, X, T, S, F, h, p). Здесь Z и X – конечные множества (состояний и входов соответственно; X называют также входным алфавитом автомата А); (множества начальных и финальных состояний соответственно); , где , (иначе говоря T – многозначное отображение с конечной областью определения); h – то же, что и для автомата Мура; p – функция вероятности переходов, , причем

. (2.1)

Отметим, что мы рассматриваем только неалфавитные МНРС, т.е. КА, у которых нет переходов для пустого слова : , а, следовательно, нет и спонтанных переходов. Отличительной особенностью МНРС является неоднозначность переходов или возможность соответствия одной и той же паре состояние - входное слово нескольких переходов и приписанной каждому переходу вероятности. Условие (2.1) означает, что сумма вероятностей всех переходов из любого состояния есть 1.

Отличие принципа действия МНРС от автомата Мура состоит в том, что, когда автомат находится в некотором состоянии и прочел входное слово, то реализуется один из возможных из данного состояния и при данном входном слове переход, при этом вероятность реализации перехода определяется функцией p.

Приведенные две модели среды с двумя разными КА не являются эквивалентными и задают разные модели поведения. Очевидно, что любая модель с автоматом Мура может быть смоделирована моделью с МНРС, причем обратное утверждение для любой модели неверно. Автомат Мура проще в реализации и исследованиях, а с помощью МНРС можно построить более точную модель среды.

3. Аппарат формирования и распознавания образов.

3.1. Биологический нейрон.

На рис. 3.1.1, взятом из [Turchin] представлен в упрощенном виде биологический нейрон. Схематично его можно разделить на три части: тело клетки, содержащее ядро и клеточную протоплазму; дендриты – древовидные отростки, служащие входами нейрона; аксон, или нервное волокно, - единственный выход нейрона, представляющий собой длинный цилиндрический отросток, ветвящийся на конце. Для описания формальной модели нейрона выделим следующие факты:

Рис. 3.1.1

1. В любой момент возможны лишь два состояния волокна: наличие импульса и его отсутствие, так называемый закон «все или ничего».

2. Передача выходного сигнала с аксона предыдущего нейрона на дендриты или прямо на тело следующего нейрона осуществляется в специальных образованиях – синапсах. Входные сигналы суммируются с синаптическими задержками и в зависимости от суммарного потенциала генерируется либо нет выходной импульс – спайк.

3.2. Формальная модель нейрона.

Впервые формальная логическая модель нейрона была введена Маккалоком и Питтсом в 1948 году [Маккалок] и с тех пор было предложено огромное количество моделей. Но все они предназначены для решения в основном задач распознавания и классификации образов. Можно указать целый ряд основных отличий предлагаемой в данной работе модели и уже существующих. Во-первых, в классических моделях всегда присутствует «учитель» или «супервизор», подстраивающий параметры сети по определенному алгоритму, предлагаемый же нейрон должен подстраиваться «сам» в зависимости от «увиденной» им последовательности входных векторов. Формально говоря, при работе нейрона должна использоваться только информация с его входов. Во-вторых, в предложенной модели нет вещественных весов и взвешенной суммации по этим весам, что является большим плюсом при создании нейрочипа и модельных вычислениях, поскольку целочисленная арифметика выполняется всегда быстрее, чем рациональная и проще в реализации. Главное же отличие предлагаемой модели состоит в цели применения. C помощью нее решаются все задачи управляющей системы: формирование и распознавание образов (ФРО), распознавание и запоминание закономерностей (БЗ), анализ информации БЗ и выбор действий (БПР), в отличии от классических моделей, где решается только первая задача.


Страница: