Преподавание алгебраического материала в начальной школеРефераты >> Педагогика >> Преподавание алгебраического материала в начальной школе
Тема IV. Операция сложения (вычитания).
1. Наблюдения за изменениями объектов по тому или иному параметру (по объему, по весу, по длительности и т.д.). Изображение увеличения и уменьшения знаками "+" и "-" (плюс и минус).
2. Нарушение ранее установленного равенства при соответствующем изменении той или иной его стороны. Переход от равенства к неравенству. Запись формул типа:
если А=Б, если А=Б,
то А+К>Б; то А-К<Б.
3. Способы перехода к новому равенству (его "восстановление" по принципу: прибавление "равного" к "равным" дает "равное").
Работа с формулами типа:
если А=Б,
то А+К>Б,
но А+К=Б+К.
4. Решение разнообразных задач, требующих применения операции сложения (вычитания) при переходе от равенства к неравенству и обратно.
Тема V. Переход от неравенства типа А<Б к равенству через операцию сложения (вычитания).
1. Задачи, требующие такого перехода. Необходимость определения значения величины, на которую разнятся сравниваемые объекты. Возможность записи равенства при неизвестном конкретном значении этой величины. Способ использования х (икса).
Запись формул типа:
если A<Б, если А>Б,
то A+х=Б; то А-x=B.
2. Определение значения х. Подстановка этого значения в формулу (знакомство со скобками). Формулы типа
А<Б,
А+х=Б,
х=Б-А,
А+(Б-А)=Б.
3. Решение задач (в том числе и "сюжетно-текстовых"), требующих выполнения указанных операций.
Тема Vl. Сложение-вычитание равенств-неравенств. Подстановка.
1. Сложение-вычитание равенств-неравенств:
если А=Б если А>В если А>В
и М=D, и К>Е, и Б=Г,
тo A+M=Б+D; то А+К>В+E; то А+-Б>В+-Г.
2. Возможность представления значения величины суммой нескольких значений. Подстановка типа:
А=Б,
Б=Е+К+М,
А=E+К+М.
3. Решение разнообразных задач, требующих учета свойств отношений, с которыми дети познакомились в процессе работы (многие задачи требуют одновременного учета нескольких свойств, сообразительности при оценке смысла формул; описание задач и решения приведены ниже).
Такова программа, рассчитанная на 3,5 - 4 мес. первого полугодия. Как показывает опыт экспериментального обучения, при правильном планировании уроков, при усовершенствовании методики преподавания и удачном выборе дидактических пособий весь изложенный в программе материал может быть полноценно усвоен детьми за более короткий срок (за 3 месяца).
Как строится наша программа дальше? Прежде всего дети знакомятся со способом получения числа, выражающим отношение какого-либо объекта как целого (той же величины, представленной непрерывным или дискретным объектом) к его части. Само это отношение и его конкретное значение изображается формулой А/К=n, где n - любое целое число, чаще всего выражающее отношение с точностью до "единицы" (лишь при специальном подборе материала или при сосчитывании лишь "качественно" отдельных вещей можно получить абсолютно точное целое число). Дети с самого начала "вынуждены" иметь в виду, что при измерении или сосчитывании может получиться остаток, наличие которого нужно специально оговаривать. Это первая ступенька к последующей работе с дробным числом.
При такой форме получения числа нетрудно подвести детей к описанию объекта формулой типа А=5k (если отношение было равно "5"). Вместе с первой формулой она открывает возможности для специального изучения зависимостей между объектом, основанием (мерой) и результатом счета (измерения), что также служит пропедевтикой для перехода к дробным числам (в частности, для понимания основного свойства дроби).
Другая линия развертывания программы, реализуемая уже в I классе, - это перенесение на числа (целые) основных свойств величины (дизъюнкции равенства-неравенства, транзитивности, обратимости) и операции сложения (коммутативности, ассоциативности, монотонности, возможности вычитания). В частности, работая на числовом луче, дети могут быстро претворить последовательность чисел в величину (например, отчетливо оценивать их транзитивность, выполняя записи типа 3<5<8, одновременно связывая отношения "меньше-больше": 5<8, но 5<3, и т.д.).
Знакомство с некоторыми так сказать "структурными" особенностями равенства позволяет детям иначе подойти к связи сложения и вычитания. Так, при переходе от неравенства к равенству выполняются следующие преобразования: 7<11; 7+х=11; x=11-7; х=4. В другом случае дети складывают и вычитают элементы равенств и неравенств, выполняя при этом работу, связанную с устными вычислениями. Например, дано 8+1=6+3 и 4>2; найти отношение между левой и правой частями формулы при 8+1-4 .6+3-2; в случае неравенства привести это выражение к равенству (вначале нужно поставить знак "меньше", а затем приплюсовать к левой части "двойку").
Таким образом, обращение с числовым рядом как с величиной позволяет по новому формировать сами навыки сложения-вычитания (а затем умножения-деления).
Глава II. Методические рекомендации к изучению алгебраического материала в начальной школе
2.1 Обучение в начальной школе с точки зрения потребностей средней школы
Как известно, при изучении математики в 5-м классе существенная часть времени отводится на повторение того, что дети должны были усвоить в начальной школе. Это повторение практически во всех существующих учебниках занимает 1,5 учебной четверти. Такая ситуация сложилась неслучайно. Ее причина – недовольство учителей математики средней школы подготовкой выпускников начальной школы. В чем же причина такого положения? Для этого была проанализированы пять наиболее известных сегодня учебников математики начальной школы. Это учебники М.И. Моро, И.И. Аргинской, Н.Б. Истоминой, Л.Г. Петерсон и В.В. Давыдова ([2], [5], [9], [14], [16]).
Анализ этих учебников выявил несколько негативных моментов, в большей или меньшей степени присутствующих в каждом из них и отрицательно влияющих на дальнейшее обучение. Прежде всего это то, что усвоение материала в них в большей мере основано на заучивании. Ярким примером этого служит заучивание таблицы умножения. В начальной школе ее запоминанию уделяется много сил и времени. Но за время летних каникул дети ее забывают. Причина такого быстрого забывания в механическом заучивании. Исследования Л.С. Выготского показали, что осмысленное запоминание гораздо более эффективно, чем механическое, а проведенные впоследствии эксперименты убедительно доказывают, что материал попадает в долговременную память, только если он запомнен в результате работы, соответствующей этому материалу.
Способ эффективного усвоения таблицы умножения был найден еще в 50-х годах. Он состоит в организации определенной системы упражнений, выполняя которые, дети сами конструируют таблицу умножения. Однако не в одном из рассмотренных учебников этот способ не реализован.
Другим негативным моментом, влияющим на дальнейшее обучение, является то, что во многих случаях изложение материала в учебниках математики начальной школы построено таким образом, что в дальнейшем детей придется переучивать, а это, как известно, гораздо труднее, чем учить. Применительно к изучению алгебраического материала примером может служить решение уравнений в начальной школе. Во всех учебниках решение уравнений основано на правилах нахождения неизвестных компонентов действий.