Преподавание алгебраического материала в начальной школе
Рефераты >> Педагогика >> Преподавание алгебраического материала в начальной школе

Однако есть основания полагать, что эти положения, справедливо выделяя особое и фундаментальное значение числа, вместе с тем неадекватно выражают его связь с другими математическими понятиями, неточно оценивают место и роль числа в процессе усвоения математики. Из-за этого обстоятельства, в частности проистекают некоторые существенные недостатки принятых программ, методик и учебников по математике. Необходимо специально рассмотреть действительную связь понятия о числе с другими понятиями.

Многие общематематические понятия, и в частности понятия соотношения эквивалентности и порядка, систематически рассматриваются в математике независимо от числовой формы. Эти понятия не теряют своего независимого характера на их основе можно описывать и изучать частный предмет - разные числовые системы, понятия о которых сами по себе не покрывают смысла и значения исходных определений. Причем в истории математической науки общие понятия развивались именно в той мере, в какой "алгебраические операции", известный пример которых доставляют четыре действия арифметики, стали применяться к элементам совершенно не "числового" характера.

В последнее время делаются попытки развернуть в преподавании этап введения ребенка в математику. Эта тенденция находит свое выражение в методических руководствах, а также в некоторых экспериментальных учебниках. Так, в одном американском учебнике, предназначенном для обучения детей 6 - 7 лет ([19]) , на первых страницах вводятся задания и упражнения, специально тренирующие детей в установлении тождественности предметных групп. Детям показывается прием соединения множеств, - при этом вводится соответствующая математическая символика. Работа с числами опирается на элементарные сведения о множествах.

Можно по-разному оценивать содержание конкретных попыток реализации этой тенденции, но сама она, на наш взгляд, вполне правомерна и перспективна.

На первый взгляд понятия "отношение", "структура", "законы композиции" и др., имеющие сложные математические определения, не могут быть связаны с формированием математических представлений у маленьких детей. Конечно, весь подлинный и отвлеченный смысл этих понятий и их место в аксиоматическом построении математики как науки есть объект усвоения уже хорошо развитой и "натренированной" в математике головы. Однако некоторые свойства вещей, фиксируемые этими понятиями, так или иначе проступают для ребенка уже сравнительно рано: на это имеются конкретные психологические данные.

Прежде всего следует иметь в виду, что от момента рождения до 7 - 10 лет у ребенка возникают и формируются сложнейшие системы общих представлений об окружающем мире и закладывается фундамент содержательно-предметного мышления. Причем на сравнительно узком эмпирическом материале дети выделяют общие схемы ориентации в пространственно-временных и причинно-следственных зависимостях вещей. Эти схемы служат своеобразным каркасом той "системы координат", внутри которой ребенок начинает все глубже овладевать разными свойствами многообразного мира. Конечно, эти общие схемы мало осознаны и в малой степени могут быть выражены самим ребенком в форме отвлеченного суждения. Они, говоря образно, являются интуитивной формой организации поведения ребенка (хотя, конечно, все более и более отображаются и в суждениях).

В последние десятилетия особенно интенсивно вопросы формирования интеллекта детей и возникновения у них общих представлений о действительности, времени и пространстве изучались известным швейцарским психологом Ж. Пиаже и его сотрудниками. Некоторые его работы имеют прямое отношение к проблемам развития математического мышления ребенка, и поэтому нам важно рассмотреть их применительно к вопросам конструирования учебной программы.

В одной из своих последних книг ([17]) Ж. Пиаже приводит экспериментальные данные о генезисе и формировании у детей (до 12 - 14 лет) таких элементарных логических структур, как классификация и сериация. Классификация предполагает выполнение операции включения (например, А + А' = В) и операции, ей обратной (В - А' = А). Сериация - это упорядочение предметов в систематические ряды (так, палочки разной длины можно расположить в ряд, каждый член которого больше всех предыдущих и меньше всех последующих).

Анализируя становление классификации, Ж.Пиаже показывают, как от ее исходной формы, от создания "фигурной совокупности", основанной лишь на пространственной близости объектов, дети переходят к классификации, основанной уже на отношении сходства ("нефигурные совокупности"), а затем к самой сложной форме - к включению классов, обусловленному связью между объемом и содержанием понятия. Автор специально рассматривает вопрос о формировании классификации не только по одному, но и по двум-трем признакам, о формировании у детей умения изменять основание классификации при добавлении новых элементов. Аналогичные стадии авторы находят и в процессе становления сериации.

Эти исследования преследовали вполне определенную цель - выявить закономерности формирования операторных структур ума и прежде всего такого их конституирующего свойства как обратимость, т.е. способности ума двигаться в прямом и обратном направлении. Обратимость имеет место тогда, когда "операции и действия могут развертываться в двух направлениях, и понимание одного из этих направлений вызывает ipso facto [в силу самого факта] понимание другого" ([17], стр. 15).

Обратимость, согласно Ж. Пиаже, представляет фундаментальный закон композиции, свойственный уму. Она имеет две взаимодополняющие и несводимые формы: обращение (инверсия или отрицание) и взаимность. Обращение имеет место, например, в том случае, когда пространственное перемещение предмета из А в В можно аннулировать, переводя обратно предмет из В в А, что в итоге эквивалентно нулевому преобразованию (произведение операции на обратную есть тождественная операция, или нулевое преобразование).

Взаимность (или компенсация) предполагает тот случай, когда, например, при перемещении предмета из А в В предмет так и остается в В, но ребенок сам перемещается из А в В и воспроизводит начальное положение, когда предмет находился против его тела. Движение предмета здесь не аннулировано, но оно компенсировалось путем cоответствующего перемешения собственного тела - и это уже другая форма преобразования, нежели обращение ([17], стр. 16).

В своих работах Ж. Пиаже показал, что эти преобразования возникают вначале в форме сенсо-моторных схем (с 10 - 12 мес.). Постепенная координация чувственно-двигательных схем, функциональная символика и языковое отображение приводят к тому, что через ряд этапов обращение и взаимность становятся свойствами интеллектуальных действий (операций) и синтезируются в единой операторной структуре (в период с 7 до 11 и с 12 до 15 лет). Теперь ребенок может координировать все перемещения в одно по двум системам отсчета сразу - одна мобильная, другая неподвижная.

Ж. Пиаже считает, что психологическое исследование развития арифметических и геометрических операций в сознании ребенка (особенно тех логических операций, которые осуществляют в них предварительные условия) позволяет точно соотнести операторные структуры мышления со структурами алгебраическими, структурами порядка и топологическими ([17], стр. 13). Так, алгебраическая структура ("группа") соответствует операторным механизмам ума, подчиняющимся одной из форм обратимости - инверсии (отрицанию). Группа имеет четыре элементарных свойства: произведение двух элементов группы также дает элемент группы; прямой операции соответствует одна и только одна обратная; существует операция тождества; последовательные композиции ассоциативны. На языке интеллектуальных действий это означает:


Страница: