Математическая логика в младших классахРефераты >> Педагогика >> Математическая логика в младших классах
Данное задание направленно не только на формирование представлений о переменных, но кроме этого оно содержит в себе несколько заданий: расположить в порядке убывания, два арифметических действия, сравнение чисел. Так же упражнение развивает внимательность и предложено в занимательной форме, что привлекает детей и вызывает интерес к заданию.
2. Сравни: а + 301 … а + 103; в – 408 … в + 48; с – 206 … с – 260; 97 – х … 79-х.
Упражнение направленно на развитие логического мышления, так как дети сравнивают выражение, содержащие переменную, отрабатываются правила сравнения.
3. Можно ли назвать все числа, которые обращают неравенство в верное: х > 5; y < 15; х + 1 < 1.
Данное задание как и предыдущие, содержат в себе несколько заданий. во-первых, отрабатывается тема «выражения с переменной», а так же значение переменной, так как для ответа на поставленный вопрос ребенок может подставлять различные значения переменной. Во-вторых, необходимо выполнить сравнение и данное упражнение развивает логическое мышление, так как ответить на поставленный вопрос можно, не подставляя значения переменных.
4. Задача: Платье стоит а рублей, а костюм – в рублей. На сколько платье дешевле костюма?
Решение данной задачи заключается в составление буквенного выражения.
Так же во втором классе изучается тема «Уравнения». И для закрепления данной темы Моро предлагает следующие задания:
1. Прочти уравнение и реши их: х + 5 = 9; 12 – х = 7; х –3 = 6; 7 + х = 13.
2. Реши уравнения и сделай проверку.
В данных заданиях детям предлагается решить уравнения. Даны простейшие уравнения без дополнительных заданий, то есть задание направленно только на закрепление темы, без какой либо занимательности.
3. Найди уравнения и реши их: х – 8 = 9; 5 + 7 = 12; а + 17; 8 + х = 14.
Это задание учит детей отличать уравнения от числовых выражений.
4. Назови уравнения, в которых неизвестное число равно 8: х · 2 = 20; 6 · х = 48; х : 2 = 5; 40 : х = 5.
Задание развивает не только умение решать уравнения, но и внимательность.
Заданий на данную тему очень мало, они все однообразны, не содержат элементов занимательности, поэтому их необходимо дополнять:
1. Какими числами можно заменить фигурки: ∆ + o = 1 ¡ : o = 25
¡ - ∆ = 25 ∆ · ¡ = 0
(∆ - 0; o - 1; ¡ - 25).
Задание очень хорошо развивает логическое мышление учащихся, внимательность, а так же содержит элемент занимательности. Его можно испоьзовать, как подготовительное к изучению темы «Уравнения». Содержит примеры на все арифметические действия.
2. В записи каких уравнений допущена ошибка? Найди неизвестное делимое: х : 5 = 3 (ост. 2) с : 2 = 7 (ост. 1)
а : 7 = 4 (ост. 1) р : 6 = 9 (ост. 7)
в : 9 = 2 (ост. 9) к : 3 = 12 (ост. 2)
Данное задание формирует умение не только решать уравнения, но и решать примеры с остатком.
3. Объясни, почему при любом значении х значение выражения х + 2 больше значения х.
Задание развивает логическое мышление, формирует вычислительные навыки.
4. Подбери пропущенные числа:
o → o → o → o → o
Задание направленно на формирование умения находить значение переменной.
5. Наташа задумала число, умножила его на два, прибавила 5. Затем она разделила результат на 7, прибавила 49 и получила 52. Какое число задумала Наташа?
Х · 2 +5 : 7 + 49 | |
52 |
Этот способ помогает детям быстро и правильно решать любые уравнения, даже длинные, с большим количеством арифметических действий. А так же присутствует элемент занимательности.
Таким образом, можно сделать вывод о том, что в учебнике Моро второго класса мало упражнений развивающих логическое мышление, внимательность. Практически отсутствуют задания с элементами занимательности. Упражнения однотипны. Поэтому просто необходимо дополнять данные в учебнике упражнения дополнительными заданиями развивающего характера.
Глава II.
Методика изучения элементов алгебры и математической логики.
§ 1. Методика изучения числовых выражений, выражений с переменными, числовых равенств и неравенств, уравнений.
Изучение числовых выражений, равенств и неравенств, а так же уравнений начинается еще с первого класса, в период изучения нумерации в пределах 10.
Так знакомство с равенствами и неравенствами начинается уже с девятой страницы. Дети учатся сначала сравнивать числа, затем выражения с целью установления отношений «больше», «меньше», «равно», учатся записывать результаты с помощью знаков «<», «>», «=» и читать полученные равенства и неравенства.
Сравнение чисел осуществляется сначала на основе сравнения множеств, которое выполняется с помощью установления взаимно однозначного соответствия. Попутно выполняется счет элементов множеств и сравнение полученных чисел:
¡ ¡ ¡ ¡ ¡ ¡ ¡ 7 ¡ ¡ ¡ 3
7 > 5 3 = 3
∆ ∆ ∆ ∆ ∆ 5 o o o 3
в дальнейшем при сравнение чисел учащиеся опираются на знание их места в натуральном ряду: девять меньше, чем десять, потому что при счете число девять называют перед числом десять. Установленные отношения записываются с помощью знаков <, >, =, учащиеся упражняются в чтении и записи равенств и неравенств, но сами термины вводятся только во втором классе.
Переход к сравнению двух выражений осуществляется постепенно. Сначала дети знакомятся с самими выражениями.
При формировании понятия числового выражения необходимо учитывать, что знак действия, поставленный между числами имеет двоякий смысл: с одной стороны, он обозначает действия, которое надо выполнить над числами; с другой стороны, знак действия служит для обозначения выражения (6 + 4 – это сумма чисел 6 и 4).
Понятия о выражениях формируется в тесной связи с понятиями об арифметических действия и способствует лучшему их усвоению. В первом классе формируется представление о простейших выражениях (сумма и разность). Знакомство осуществляется при помощи метода изложения.
На доске записан пример на сложение: 5 + 2.
Назвать и подписать: это сумма.
Найти чему равна сумма: 7.
Записать и подписать – это тоже сумма.
Каждое из чисел имеет свое название (имя): 5 – первое слагаемое, 2 – второе слагаемое. Наш пример можно прочесть так: сумма чисел 2 и 5 равна 7; первое слагаемое 5, второе – 2, сумма – 7.
Так же знакомятся и с разностью. И только после этого дети сравнивают выражение с числом, а далее выражение с выражением.
На первом уроке можно дать упражнение на сравнение с опорой на рисунки, например, в двух рядах рисуются по 6 квадратов (6 = 6), затем в первом ряду дорисовывают два квадрата или зачеркивают два квадрата. И дается запись: