Иоганн Кеплер
Рефераты >> История >> Иоганн Кеплер

В начале 1605 г. Кеплеру удалось найти истинную связь между расстоянием Солнце — Марс и так называе­мой эксцентрической аномалией. Он нашел тогда уравне­ние, которое сейчас называется его именем и широко используется в теоретической астрономии. Это уравнение имеет вид:

— константы. Это уравнение является одним из первых трансцендентных уравнений, которые нашли практическое приложение. Наконец Кеплер заметил, что боковое сжатие орбиты составляет 0,00429 доли ра­диуса, что точно равно поло­вине квадрата определенно­го им ранее эксцентриситета (0,09262 =0,00857). И тогда Кеплер предположил, что орбита Марса — эллипс, но Солнце располагается не в его центре, а в одном из фо­кусов. Проверка гипотезы эллипса быстро привела его к успешному завершению работы, ознаменовавшемуся вы­водом первого закона: Марс движется по эллипсу, в одном из фокусов которого находится Солнце. Кеплер не сомне­вался, что по этому же закону движутся и ос­тальные планеты, что вскоре им было проверено. Он был уверен также, что и орбита Земли — эллипс, но из-за ма­лого эксцентриситета (e= 0,01673) и недостаточной точ­ности наблюдений этот эллипс тогда еще невозможно бы­ло отличить от окружности. Открытые Кеплером законы подготовили почву Нью­тону для открытия закона всемирного тяготения.

Законы Кеплера сохраняют свое значение и в наше время. Правда, будучи абсолютно строгими математиче­скими законами для движения двух материальных тел (точнее — материальных точек), они не учитывают воз­действия на каждую планету других планет, которые хо­тя и очень слабы, но все же приводят к небольшим откло­нениям их движения от эллиптической орби­ты. Но математики и астрономы научились учитывать эти воздействия (благодаря чему, между прочим, были откры­ты планеты Нептун и Плутон).

Третий закон движения планет Кеплер вывел значительно позже (в 1619 г.). Суть этого закона была изложена в труде под названием «Мировая гармония». Кеплер формулирует этот закон так: « . отношение между периодами обращения каких-нибудь двух планет как раз равняется полуторной степени отношения их средних расстояний; однако обращаю внимание на то, что среднее арифметическое обоих диаметров эллиптической, орбиты немногим менее длиннейшего диаметра». Сейчас этот закон формулируется в такой форме: квадраты сидерических периодов планет относятся между собой, как кубы их средних расстояний от Солнца.

Математические исследования Кеплера.

С 1594 г. Кеплер имел официальное звание математика: штирийский провинциальный математик с 1594 по 1600 г., императорский математик с 1601 г. до конца жизни и, кроме того, математик провинции Верхней Австрии с 1613 по 1628 г. в те времена понятие «математика» был значительно шире чем в наше время. Так в «Математическом словаре» французского академика Ж. Озанама, изданном в 1691 г., кроме традиционных арифметики, алгебры, геометрии, в круг математических предметов включены были также механика с гидростатикой, архитектура и фортификация, география и навигация, астрономия, оптика, а также музыка.

В работах Кеплера математического характера отчетливо прослеживается воздействие, которое оказывали на формирование новых математических идей и методов потребности точного естествознания, в особенности астрономии, механики. Математика во времена Кеплера становилась мощным инструментом изучения и открытия закономерностей и свойств окружающего мира.

Задачи из «Новой астрономии» были лишь первым его шагом в развитии математики переменных величин. Сле­дующим шагом была книга «Nova stereometria doliorum vinariorum . accesit Stereometriae Archimedae Supplementum» («Новая стереометрия винных бочек . с присоеди­нением дополнения к Архимедовой стереометрии»). Книга эта заняла видное место в истории математики и, кстати, является единственным произведением Кеплера, полностью переведенным на русский язык. Книга выш­ла в Линце в 1615 г., но написана она была почти на два года раньше, и послужил этому весьма любопытный по­вод, известный по словам самого Кеплера. Осенью 1613 г. в Верхней Австрии был собран особен­но обильный урожай винограда. Многочисленные суда и баржи, груженные вином, уходили вверх по Дунаю, а при­стань в Линце все еще была забита бочками. Кеплер как решил запастись приятным на­питком. Бочки с вином были доставлены к нему на двор, а затем появился купец и с помощью единственного инструмента — мерной линейки, стержня с делениями, быстро измерил количество вина в каждой из бочек без вся­ких вычислений и учета формы бочек. Он вставлял линей­ку в наливное отверстие бочки вплоть до упора в ниж­ний край днища, после чего объявлял количество амфор (сосудов, принятых за меру емкости) в ней. Кеплер был очень удивлен этим: каким образом нак­лонный отрезок между двумя определенными точками может служить мерой вместимости бочки. Он даже усом­нился в правильности такого метода измерения, так как представлялось, что очень низкая, ограниченная широкими днищами, бочка могла иметь такое же расстояние до нижней точки днища, как и более высокая бочка с менее широкими днищами. Обоснованно ли такое опре­деление вместимости? Тем более Кеплер вспомнил, что севернее, на Рейне, вместимость бочек определялась либо непосредственным подсчетом количества единиц меры емкости при переливании, либо производили многочис­ленные замеры размеров бочки, после чего в результате громоздких и утомительных вычислений объявляли ее емкость, хотя многим этот способ казался ненадежным.

Узнав, что употребление мерной линейки санкциони­руется здесь властями, Кеплер «счел для себя подходя­щим взять новый предмет математические занятий и ис­следовать геометрические законы такого удобного и край­не необходимого в хозяйстве измерения, а также выяс­нить его основания, если таковые имеются». Уже к концу того же года после нескольких недель работы было готово сочинение о результатах этого иссле­дования, и Кеплер отправил его для издания в Регенсбург, так как в это время в Линце еще не было ни одной типогра­фии. Однако издатель, к которому Кеплер обратился, вско­ре сообщил, что, по мнению книгопродавцев, предложенное Кеплером сочинение, к тому же написанное на латин­ском языке, пользоваться спросом не будет, и субсидировать издание отказался. Рукопись надолго застряла в Регенсбурге, и Кеплер вспомнил о ней только тогда, когда при его участии весной 1615 г. в Линце была создана типография. Не без затруднений (издатель, которому была направлена рукопись, к тому времени умер) удалось разыскать и вернуть рукопись в Линц. Кеплер подвергает ее существенной переработке, а также дописывает новую, очень важную главу «Дополнения к Архимеду». Уже осенью 1615 г. «Новая стереометрия винных бочек» — пер­вая книга, напечатанная в Линце, поступила в продажу на ярмарке в крупнейшем тогдашнем центре книготоргов­ли — Франкфурте.

Ее издание было предпринято Кеплером за свой счет. Пытаясь хотя бы частично покрыть понесенные расходы, он обращается к своим друзьям с просьбой рекомендо­вать его книгу заинтересованным лицам и учебным заве­дениям. О спросе на математическую литературу в то время свидетельствует письмо к Кеплеру Гданьского ма­тематика Крюгера, в котором он пишет, что во всей окру­ге видит лишь трех потенциальных покупателей: своего кёнигсбергского коллегу, кёнигсбергскую библиотеку и некоего дворянина по фамилии Невешинский.


Страница: