Иоганн Кеплер
Но дело не ладилось, хотя, казалось, цель была совсем близкой. «И вот я снова устремился вперед. Зачем рассматривать фигуры двух измерений для пригонки орбит в пространстве? Следует рассмотреть формы трех измерений, и вот, дорогой читатель, теперь мое открытие в Ваших руках!». Можно построить любое число правильных многоугольников на плоскости, но можно построить лишь ограниченное число правильных многогранников в пространстве трех измерений. Такими правильными многогранниками, все грани которых являются правильными и равными между собой многоугольниками и все двугранные углы которых равны между собой, являются: тетраэдр (4 треугольные грани), куб (6 граней-квадратов), октаэдр (8 треугольных граней), додекаэдр (12 пятиугольных граней) и икосаэдр (20 треугольных граней).
Важным свойством правильных многогранников является существование для каждого из них вписанного и описанного шаров (сфер) таких, что поверхность вписанного шара касается центра каждой грани правильного многогранника, а поверхность описанного шара проходит через все его вершины. Центры этих шаров совпадают между собой и с центром соответствующего многогранника. Еще древним грекам было известно, что число видов правильных многогранников ограничивается пятью. Но ведь и промежутков между планетами, подумал Кеплер, тоже пять. Как трудно было допустить, что это простая случайность (к тому же умозаключение опиралось на неверное представление о числе планет) и как заманчиво было видеть в этом совпадении мудрость творца. Ответ на вопрос, почему планет шесть, не меньше и не больше, казалось найден. Одновременно назревает и решение вопроса об относительных расстояниях между орбитами планет: в сферу, на которой расположена орбита Сатурна, вписан куб, в него вписана следующая сфера — с орбитой Юпитера, далее последовательно вписаны тетраэдр, сфера Марса, додекаэдр, сфера Земли, икосаэдр, сфера Венеры, октаэдр, сфера Меркурия, в центре всей системы у коперниканца Кеплера, разумеется, Солнце, и — тайна Вселенной раскрыта, раскрыта молодым учителем протестантской школы в Граце и математиком провинции Штирии.
Рис. 2 Правильные многогранники (из книги Кеплера «Космографическая тайна») |
Математический аппарат, применяемый в этом случае, достаточно элементарен, дело сводится к вычислениям зависимостей между радиусами сфер, описанных вокруг соответственных правильных многогранников и вписанных в них. Пусть, например, радиус орбиты Земли, а значит и соответствующей сферы, равен 1. Эта сфера описана вокруг икосаэдра, в который вписана сфера Венеры. Решая геометрическую задачу на определение радиуса сферы, вписанной в икосаэдр, и сравнивая полученную величину с радиусом описанной вокруг икосаэдра сферы Кеплер получил соотношение 0,762 : 1. Относительные расстояния до Солнца для шести планет Солнечной системы, полученные Коперником и Кеплером, и современные усредненные значения приводятся в таблице:
Меркурий | Венера | Земля | Марс | Юпитер | Сатурн | |
По Копернику |
0,379 |
0,719 |
1,000 |
1,520 |
5,219 |
9,174 |
По Кеплеру |
0,419 |
0,762 |
1,000 |
1,440 |
5,261 |
9,163 |
Современные усредненные значения |
0,387 |
0,723 |
1,000 |
1,524 |
5,203 |
9,539 |
Видим, что данные Кеплера весьма значительно отличаются от вычисленных еще Коперником, и притом во всех случаях — в сторону ухудшения. Объясняя эти расхождения, Кеплер предположил, что каждая из планетных сфер, не будучи материальной, тем не менее имеет некоторую толщину.
Закончив рукопись, Кеплер озаглавил ее так: «Prodromos dissertationem cosmographicum continens Mysterium cosmographicum» — «Предвестник космографических исследований, содержащий космографическую тайну».
Главный поиск. «Новая астрономия»
Над «Новой астрономией» Кеплер работал с небольшими перерывами с 1600 по 1606 г. Значение этой книги состоит прежде всего в том, что в ней дан вывод двух из трех знаменитых законов движения планет, названных его именем. В современной формулировке эти законы обычно звучат так:
I. Все планеты движутся по эллипсам, в одном из фокусов которых (общем для всех планет) находится Солнце.
II. Площади, описываемые радиусами-векторами планет, пропорциональны времени.
Третий закон был опубликован Кеплером позже, в 1619 г., в книге «Harmonices Mundi» («Гармония мира»). Кеплерово сочинение и по форме и по содержанию значительно отличается от многих научных трактатов того времени. Если Коперник, Галилей и Ньютон знакомят нас только с конечными результатами своих научных достижений, то Кеплер совершенно сознательно описывает ход своей работы во всех деталях, включая все неудачи и успехи, ошибки и гениальные догадки, ловушки и их обходы. Почему он так поступает, он объясняет в предисловии: «Для меня важно не просто сообщить читателю, что я должен сказать, но прежде всего ознакомить его с доводами, оговорками, счастливо преодоленными опасностями, которые привели меня к моим открытиям. Когда Христофор Колумб, Магеллан и португальцы, из которых первый открыл Америку, второй Китайский океан, а последние — морской путь вокруг Америки, повествуют, как они сбивались с пути и блуждали в своих путешествиях, мы не только прощаем им это, но, более того, мы не желаем пропуска этих рассказов, так как тогда при чтении было бы потеряно впечатление о всем значительном в их предприятиях. Пусть же поэтому и мне не поставят в вину, когда я, вызывая у читателя интерес, пойду подобным путем в своем изложении. Конечно, при чтении, например похождений аргонавтов, мы сами не принимаем участия в их злоключениях, а трудности и тернии на моем мысленном пути могут задеть и самого читателя, но таков уж жребий всех математических сочинений».