Анализ условий плаванья в условиях мелководья
Решения кубического уравнения (2.35.) можно считать по сложности вычислений равноценным формулам (2.94.), тем не менее, выражения (2.94.) можно упростить, как минимум сделав показатели степеней целочисленными и методами теории идентификации по методике [34] дополнительно ввести коэффициенты аппроксимации.
В зависимости от длины судна в значениях скоростного запаса глубины наблюдается некоторое противоречие: по выражениям (2.40.), (2.65.), (2.66.), NPL с увеличением длины судна увеличивается скоростной запас, а по остальным выражениям, содержащим в качестве аргумента длину судна - уменьшаются. С точки зреция безопасности мореплавания первое более выгодно.
Наиболее близким к выражениям (2.94.), принятым для сравнения, являются расчеты по выражениям (2.47.), (2.48.), т.е. формулы Г.И.Сухомела. Поэтому функциональную зависимость скоростного запаса глубины в выражениях (2.94.) от длины судна целесообразно принять в форме Г.И.Сухомела (2.47.), (2.48.), как более простой для вычислений, обеспечивающий аналогичный вид кривых, а разницу методов (2.94.), (2.48.) устранить путем аппроксимации [34]. Для значений длины судна более 140 м (характерной для современных морских судов) расхождения скоростного запаса глубины не превышают 0,4-0,6 м. При этих условиях наравне с выражениями (2.94.), (2.48.) могут быть рекомендованы для расчетов формулы (2.65.),(2.66.).
В зависимости от ширины судна характер изменения скоростного запаса глубины имеет, как правило, вид линейной возрастающей функции со значительными расхождениями коэффициентов углов наклона графиков. С учетом предыдущих выводов для практического использования можно рекомендовать в зависимости от ширины судна выражения скоростного запаса глубины (1.12), (2.44.), (2.47.), (2.48.), (2.69.), (2.94.), как дающие средние значения из всех возможных. Из соображений простоты вычислений целесообразно сохранить функциональные зависимости типа формул Г.И.Сухомела (2.48.).
В зависимости от коэффициента общей полноты судна графики скоростного запаса глубины для всех формул, в которые входит этот параметр, имеют практически одинаковый характер с постоянными смещениями . Поэтому в соответствии с предыдущими выводами и, как среднее из графиков , целесообразно рекомендовать к использованию
формулы (2.67.), (2.68.). В зависимости от коэффициента полноты мидельшпангоута графики скоростного запаса глубины для всех формул, в которые входит этот параметр, имеют также одинаковый характере постоянными смещениями для различных формул. Но с учетом предыдущих выводов целесообразно рекомендовать к использованию формулу (1.12) в предпочтение другим. Максимальные расхождения значений скоростного запаса от осадки судна наблюдаются с увеличением осадки от 0,2 до 1,0м, характер изменения можно считать практически линейным за исключением формул (2.63.), (2.75.), (2.77.), (2.79.), (2.87.), (2.88.). Это подчеркивает тот факт, что формулы (2.94.) можно упростить, т.е. степени 4,3 и 5,7 могут быть заменены линейными зависимостями с соответствующим угловым коэффициентом. С учетом предыдущих выводов по подробности расчетов и простоте вычислений целесообразно для практического использования рекомендовать формулы (1.12), (2.44.), (2.65.), (2.66.), (2.68.), (2.69.), (2.94.) в предпочтение другим. При этом скоростной запас глубины в зависимости от глубины по формуле (2.94.) является практически постоянным, хотя с точки зрения безопасности плавания с увеличением глубины ее влияние на просадку сказывается меньше и меньше должен быть скоростной запас глубины.
С увеличением ширины канала (фарватера) скоростной запас глубины при прочих равных условиях, как и следовало ожидать, уменьшается . Характер изменения скоростного запаса глубины практически одинаковый за исключением выражений (2.87.), (2.88.). Исходя из предыдущих выводов к практическому использованию, в зависимости от этого параметра целесообразно рекомендовать выражения (1.12), (2.44), (2.69.).
Зависимости скоростного запаса глубины от основных размерений судна можно считать практически линейными для всех анализируемых формул. Следовательно, из всех рассматриваемых формул к практическому использованию можно рекомендовать те, которые имеют более простой, что упрощает вычисления. В качестве таких формул можно выбрать (2.65.), (2.66.), (2.68.), (2.69.) как наиболее простые для вычислений, и расчетные данные по этим формулам наиболее близкие к средним значениям из всех анализируемых формул.
Таким образом, сравнительные расчеты скоростного запаса глубины показывают в целом одинаковую качественную зависимость его величины от различных параметров не смотря на различные функциональные зависимости. Однако, численные значения этих величин рас
ходятся до 50 по различным формулам. С целью упрощения вычислений предлагается аппроксимировать выражения скоростного запаса глубины (2.94.) с учетом различных функциональных зависимостей параметров следующими формулами: .
DH4 = KV1Ve + KV2Vt (2.107.)
где:
KV2=a1(BcCB/L)m[1+a2(TBcb/HBK)K](T/(T+SDHi)n (2.108.)
KV2=a3(BcCB/L)m[1+a4(TBcb/HBK)K](T/(T+SDHi)n (2.108.)
ai - коэффициенты аппроксимации, подлежащие определению;
m = 1, 2, 3;
К =1/3 ,1/2, 1,2;
n = 1, 2, 3, 4, 5;
e = 1, 2, 3;
t = 2, 3, 4, 5.
Показатели степеней выражений (2.107.) - (2.109.) и коэффициентов аппроксимации необходимо определить методами теории идентификации из условия наилучшего приближения значений по выражениям (2.107.)-(2.109.) к выражениям (2.94.).
Вместе с этим можно также использовать выражения скоростного запаса глубины (2.37.) с предложенной аппроксимацией (2.66.), (2.38.), (2.69.). Числовые коэффициенты этих выражений также могут быть уточнены методами теории идентификации для приближения к выражениям (2.94.).