Строение атома. Есть ли предел таблицы Менделеева?Рефераты >> Естествознание >> Строение атома. Есть ли предел таблицы Менделеева?
Но, кроме этого спонтанного перехода, впервые введенного Бором при объяснении спектров, по Эйнштейну, для молекул и атомов, находящихся в световом поле, возможны индуцированные переходы под действием светового излучения. Вероятность такого «индуцированного излучения»:
где p —объемная плотность световой энергии. Точно так же вероятность поглощения энергии молекулой, находящейся в состоянии Zn и перехода ее на высший энергетический уровень Zm будет:
В равновесном состоянии атом в среднем столько же поглощает энергии, сколько и излучает. Поэтому:
где по закону статистики Больцмана число молекул, находящихся в состоянии Zn, пропорционально:
Из предыдущего равенства получается:
Положим ет — en =hv, для высоких частот, применяя закон Вина, получим формулу Планка:
Идея Эйнштейна об индуцированном излучении нашла в современной физике и технике важное применение в лазерах.
Как было уже сказано, в 1916 г. Зоммерфельд обобщил теорию Бора, введя правила квантования для систем с несколькими степенями свободы в виде .
Он рассмотрел движение по эллипсу, введя азимутальные и радиальные квантовые числа. Введя далее пространственное квантование и третье квантовое число, он дал теорию нормального эффекта Зеемана. Наконец, он дал теорию тонкой структуры спектральных линий и объяснение рентгеновских спектров. Все эти результаты были подробно разработаны им в классической монографии «Строение атомов и спектры», первое издание которой вышло в 1917 г. До 1924 г. включительно эта книга выдержала четыре издания. Последнее издание ее уже в двух томах вышло в 1951 г. и русский перевод— в 1956 г.
Таким образом, к 1917 г. идеи Бора получили всестороннее развитие как в работах самого Бора, так и других авторов. Они были экспериментально подтверждены, и теория Бора получила всеобщее признание. Но те трудные вопросы, которые были поставлены Резерфордом, еще не были сняты, а многие трудности, с которыми сталкивалась теория в попытках рассмотреть многоэлектронные атомы, аномальный эффект Зеемана и многое другое, показали, что в теории Бора при всех ее успехах есть серьезные недостатки принципиального характера. Трудности и противоречия накопились, и надо было искать выход.
Возникновение квантовой механики (1925— 1930 гг)
Трудности теории бора
Теория Бора с самого начала вызывала многие вопросы, остававшиеся без ответа. Эти вопросы были поставлены Резерфордом еще при обсуждении рукописи его первой статьи. Как понимать сочетание идей Бора и классической механики, в которой нет места для квантовых скачков, и откуда электрон знает, на какую орбиту ему следует перескакивать?
В 1896 г. голландский физик Питер Зееман (1865—1943) произвел опыт, который пытался осуществить еще Фарадей. Пламя натриевой горелки он помещал между полюсами электромагнита и наблюдал в спектроскоп ее спектр. По оси электромагнита был просверлен канал, так что явление можно было наблюдать не только перпендикулярно силовым линиям поля (поперечный эффект), но и вдоль поля (продольный эффект). При наблюдении поперек поля, кроме линии с частотой колебаний vo, равной частоте колебаний в отсутствие поля, наблюдались две линии с частотами v1=v0-Dv и v2=v0-Dv. Все три линии линейно поляризованы. Несмещенная линия соответствует колебаниям вдоль силовых линий, смещенные — колебаниям, перпендикулярным силовым линиям. При наблюдении вдоль поля несмещенная компонента отсутствует, смещенные линии поляризованы по кругу в противоположных направлениях.
Лоренц в 1897 г. дал простую теорию эффекта, исходя из представлений, что в атомах электроны совершают круговые движения с циклической частотой w0. В магнитном поле на них действует сила Лоренца и частота обращения изменяется на величину Dw, равную приближенно:
Лармор (1857-1942) в 1899 г. интерпретировал действие магнитного поля как действие поля тяжести на волчок. Волчок прецессирует вокруг направления силы тяжести с угловой частотой Dw. Точно так же вращающиеся электроны в атоме прецессируют вокруг силовых линий магнитного поля с круговой частотой .
Зоммерфельд, развивая теорию Бора, ввел идею пространственного квантования. Движение электрона по орбите определяется радиальным и азимутальным квантовыми числами или главным квантовым числом п, определяющим энергию электрона, и побочным квантовым числом k, определяющим форму орбиты. Положение орбиты в пространстве определяется третьим магнитным квантовым числом т. Введение этого числа и квантование направлений оси по отношению к магнитному полю позволяет дать объяснение эффекта Зеемана. Однако это объяснение в известном смысле было хуже объяснения, данного Лоренцем. Оно ничего не говорило о поляризации линий. Вообще теория спектров, по Бору и Зоммерфельду, говорила лишь о частотах линий и не могла объяснить их интенсивность и поляризацию. Чтобы теория могла что-то сказать об этом, Бор ввел принцип соответствия.
Согласно этому принципу «существует далеко идущее соответствие» между квантовым и классическим описанием излучения. В квантовом описании линии спектра излучения обусловлены переходами из одного состояния в другое, в классическом эти линии определяются разложением движения электрона в ряд Фурье. При этом, как указывает Н. Бор, «частота излучения, испускаемого при переходе между стационарными состояниями, характеризуемыми числами п' и п", большим по сравнению с их разностью, совпадает с частотой одной из компонент излучения, которую можно ожидать при избранном движении электрона в стационарном состоянии на основании обычных представлений. Далее Бор пишет: «Задаваясь вопросом о более глубоком значении найденного соответствия, мы вправе, естественно, ожидать, что соответствие не ограничивается совпадением частот спектральных линий, вычисленных тем и другим методом, но простирается и на их интенсивности. Такое ожидание равносильно тому, что вероятность определенного перехода между двумя стационарными состояниями связана известным образом с амплитудой, соответствующей гармонической компоненте».
Применение принципа соответствия позволило определить и поляризацию в нормальном эффекте Зеемана. Квантовый переход, соответствующий изменению магнитного квантового числа на ± 1, дает круговую поляризацию в плоскости, перпендикулярной к силовым линиям. Квантовый переход Am = 0 соответствует линейной поляризации, параллельной силовым линиям.