Строение атома. Есть ли предел таблицы Менделеева?
Рефераты >> Естествознание >> Строение атома. Есть ли предел таблицы Менделеева?

Резерфорд рассчитал вероятность такого отклонения и показал, что она пропорциональна числу атомов п в еди­нице рассеивающего материала, тол­щине рассеивающей пластинки и вели­чине b2, выражаемой следующей фор­мулой:

где Ne— заряд в центре атома, Е—за­ряд отклоняемой частицы, т—ее масса, и—ее скорость. Кроме того, эта вероят­ность зависит от угла рассеяния ф, так что число рассеянных частиц на едини­цу площади пропорционально cosec4 (Ф/2).

Важным следствием теории Резерфорда было указание на заряд атом­ного центра, который Резерфорд поло­жил равным ± Ne. Заряд оказался про­порциональным атомному весу.

В 1913 г. Гейгер и Марсден предпри­няли новую экспериментальную про­верку формулы Резерфорда, подсчитывая рассеяние частиц по производимым ими сцинтилляционным вспышкам. Из этих исследований и возникло представле­ние о ядре как устойчивой части атома, несущей в себе почти всю массу атома и обладающей положительным зарядом. При этом число элементарных зарядов оказалось пропорциональным атомному весу.

В 1913 г. Ван ден Брук показал, что заряд ядра совпадает с номером элемента в таблице Менделеева. В том же1913 г. Ф. Содди и К. Фаянс пришли закону смещения Содди—Фаянса, ее гласно которому при а-распаде радио­активный продукт смещается в менделеевской таблице на два номера выше а при b-распаде—на номер ниже. К этому же времени Содди пришел представлению об изотопах как разновидностях одного и того же элемент ядра атомов которых имеют одинаковый заряд, но разные массы.

В богатом событиям 1913 г. были опубликованы три знаменитые статьи Бора «О строении атомов и молекул», открывшие путь к атомной квантовой механике.

Томас Рис Вильсон (1869-1959) изо­брел замечательный прибор, известный ныне под названием «камера Виль­сона». Этот прибор позволяет видеть заряженную частицу по оставляемому ею туманному следу.

Позднее ученик и сотрудник Резерфорда Блэккет (1897—1974) получил вильсоновскую фотографию расщеп­ления ядра азота а-частицей, первой ядерной реакции, открытой Резерфордом.

В этом же году Бор, имевший возможность поработать с автором первой модели атома, а затем с автором планетарной модели, на основе последней создает свою теорию атома Резерфорда-Бора.

Знаменитая статья Бора, в которой были заключены основы этой теории, начиналась с указания на модели Резерфорда и Томсона и обсуждения их особенностей и различий.

Резерфорд сразу понял ре­волюционный характер идей Бора и высказал критические замечания по самым фундаментальным пунктам теории Бора. После длительных ди­скуссий статья Бора и две его после­дующие статьи были опубликованы. Однако окончательный ответ на возра­жения Резерфорда был дан только со­зданием квантовой механики.

В 1915 г. Бор опубли­ковал работы «О сериальном спектре водорода и строении атома» и «Спектр водорода и гелия», «О квантовой теории излучения в структуре атома». Он развил исследования, выполненные им в Манчестере в августе 1912 г., и опу­бликовал их под названием «Теория торможения заряженных частиц при их прохождении через вещество».

В декабре 1915 и январе 1916 г. Ар­нольд Зоммерфельд (1868—1951) развил теорию Бора, рассмотрев дви­жение электрона по эллиптическим орбитам и обобщив правила квантова­ния Бора. Зоммерфельд дал также теорию тонкой структуры спектральных линий, введя релятивистское измене­ние массы со скоростью. В его расчеты вошла безразмерная универсальная по­стоянная тонкой структуры:

Теория атома после открытия Зоммерфельда стала назы­ваться теорией Бора — Зоммерфельда.

Продолжая развивать свои идеи, Бор сформулировал принцип соответ­ствия (1918), означавший шаг вперед в ответе на вопросы, поставленные Резерфордом.

В 1922 г. Бор получил Нобелевскую премию по физике. В нобелевском докладе он развернул картину с стояния атомной теории к этому времени. Одним из наиболее существенных успехов теории было нахождения. ключа к периодической системе элементов, которая объяснялась наличие электронных оболочек, окружающих ядра атомов.

В 1925 г. работой Гейзенберга нача­лось создание квантовой механики. В том же году Уленбек и Гаудсмит, работавшие у Эренфеста, открыли спин электрона, а Паули открыл принцип, носящий ныне его имя. После открытия Гейзенбергом в 1927 г. принципа неопределенности Бор выдвинул в качестве основной теоретической идеи квантовой теории принцип дополнительности.

В 1936 г. Бор выступил со статьей «Захват нейтрона и строение ядра», в которой предложил капельную модель ядра и механизм захвата нейтрона ядром. Ядерной физике была посвя­щена также работа 1937 г. «О превра­щении атомных ядер, вызванных столк­новением с материальными частица­ми».

В конце 1938—начале 1939 г. было открыто деление урана.

Atom бора

Бор, как и Томсон до него, ищет такое расположение электронов в атоме, которое объяснило бы его физические и химические свой­ства. Бор уже знает о модели Резерфорда и берет ее за основу. Ему известно также, что заряд ядра и число электро­нов в нем, равное числу единиц заряда, определяется местом элемента в перио­дической системе элементов Менделее­ва. Таким образом, это важный шаг в понимании физико-химических свой­ств элемента. Но остаются непо­нятными две вещи: необычайная устой­чивость атомов, несовместимая с пред­ставлением о движении электронов по замкнутым орбитам, и происхождение их спектров, состоящих из вполне опре­деленных линий. Такая определенность спектра, его ярко выраженная химиче­ская индивидуальность, очевидно, как-то связана со структурой атома.

Устойчивость атома в целом противоречит зако­нам электродинамики, согласно кото­рым электроны, совершая периодиче­ские движения, должны непрерывно излучать энергию и, теряя ее, «падать» на ядро. К тому же и характер движения электрона, объясняемый законами электродинамики, не может приводить к таким характерным линейчатым спектрам, которые наблюдаются на са­мом деле.

Линии спектра группируются в серии, они сгущаются в коротковолно­вом «хвосте» серии, частоты линий соот­ветствующих серий подчинены стран­ным арифметическим законам.

Так, Иоганн Бальмер в 1885 г. нашел, что четыре линии водо­рода На, Нb, Нg, Hs имеют длины волн, которые могут быть выведены из одной формулы:

Позже было найдено еще два десят­ка линий в ультрафиолетовой части, и их длины волн также укладывались в формулу Бальмера.

Иоганн Ридберг в 1889-1900 гг. нашел, что и линии спектров щелочных металлов могут быть распре­делены по сериям. Частоты линий каж­дой серии могут быть представлены в виде разности двух членов—термов. Так, для главной серии

где R — некоторое постоянное число, получившее название постоянной Ридберга, s и р — дробные поправки, меняю­щиеся от серии к серии.

«Основным результатом тщатель­ного анализа видимой серии линейча­тых спектров и их взаимоотношений, — писал Бор,—было установление того факта, что частота v каждой линии спектра данного элемента может быть представлена с необыкновенной точ­ностью формулой v =T’—T”, где T' и T" — какие-то два члена из множества спектральных термов T, характеризую­щих элемент».


Страница: