Строение атома. Есть ли предел таблицы Менделеева?
Рефераты >> Естествознание >> Строение атома. Есть ли предел таблицы Менделеева?

Aтом Резерфорда-Бора

Модели atоma до бора

Но вернемся к последовательному изложению развития представлений о строении атома.

Развитие исследований радиоактив­ного излучения, с одной стороны, и квантовой теории — с другой, привели к созданию квантовой модели атома Резерфорда — Бора. Но созданию этой модели предшествовали попытки по­строить модель атома на основе пред­ставлений классической электродина­мики и механики. В 1904 г. появились публикации о строении атома, при­надлежащие одна японскому физику Хантаро Нагаока, другая— английскому физику Д. Томсону.

Нагаока исходил из исследований Максвелла об устойчивости колец Са­турна и представил строение атома ана­логичным строению солнечной систе­мы: роль Солнца играет положительно заряженная центральная часть атома, вокруг которой по установленным коль­цеобразным орбитам движутся «плане­ты»—электроны. При незначительных смещениях электроны возбуждают электромагнитные волны, периоды которых, по расчетам Нагаоки, того же порядка, что и частоты спектральных линий некоторых элементов.

В атоме Томсона положительное электричество «размазано» по сфере, в которую вкраплены, как изюм в пудинг, электроны. В простейшем атоме водо­рода электрон находится в центре положительно заряженной сферы. При смещении из центра на электрон действует квазиупругая сила электро­статического притяжения, под действи­ем которой электрон совершает колеба­ния. Частота этих колебаний опреде­ляется радиусом сферы, зарядом и мас­сой электрона, и если радиус сферы имеет порядок радиуса атома, частота этих колебаний совпадает с частотой колебания спектральной линии атома. В многоэлектронных атомах электроны располагаются по устойчивым конфигурациям, рассчитанным Томсоном. Томсон считал каждую такую конфигурацию определяющей химические свойства атомов. Он предпринял пытку теоретически объяснить периодическую систему элементов Д. И. Менделеева. Эту попытку Бор позднее назвал «знаменитой» и указал, что со времени этой попытки «идея о разделении электронов в атоме на группы сделалась исходным пунктом и более новых воззрений». Отметив, что теория Томсона оказалась несовместимой с опытными фактами, Бор тем не менее считал, что эта теория «содержит много оригинальных мыслей и оказала большое влияние на развитие атомной теории».

В 1905 г. В. Вин выступал с докладом об электронах на съезде немецких естествоиспытателей и врачей в Мюнхене. Здесь он, в частности, указывал на трудность объяснения линейчатых спектров атомов с точки зрения электронной теории. Он говорил: «Проще всего было бы понимать каждый атом как планетную систему, которая состоит из положительно заряженного центра, вокруг которого обращаются электроны как планеты. Но такая система не может быть устойчивой вследствие излучаемой электронами энергии. Поэтому мы вынуждены обратиться к системе, в которой электроны находятся в относительном покое или обладают ничтожными скоростями, хотя такое представление содержит много сомнительного».

Такой статической моделью был атом Кельвина — Томсона. И эта модель была общепринятой по причинам, указанным Вином.

В конце концов оказалось, что новые опытные факты опровергают модель Томсона и, наоборот, свидетельствуют в пользу планетарной модели, факты эти были открыты Резерфордом.

24 мая 1907 г. в Манчестере Резерфорд развернул огромную, привлекая молодых ученых из разных стран мира. Одним из его деятельных сотрудников был немецкий физик Ганс Гейгер, создатель первого счетчика элементарных частиц — счетчика Гейгера. В Манчестере с Резерфордом работали Э. Марсден, К. Фаянс, Г. Мозли, Г. Хевеши и другие физики и химики.

В Манчестер в 1912 г. приехал Нильс Бор.

В этой атмосфере коллективного научного творчества родились крупные научные достижения Резерфорда, из которых в первую очередь следует отметить разгадку природы а-час­тиц и открытие ядерного строение атома.

Сюда же следует присоединить знаменитые статьи Бора по квантовой теории планетарного атома. В Манчестере было положено начало квантовой и ядерной физике.

Открытие атомного ядра

Уподобление атома планетной системе делалось еще в самом начале XX в. Но эту модель было трудно со­вместить с законами электродинамики, и она была оставлена, уступив место модели Томсона. Однако в 1904 г. на­чались исследования, приведшие к ут­верждению планетарной модели.

Одна из тем, выдвинутая Резерфордом в Манчестере,—рассеяние а-частиц. Она была поручена Гейгеру и Марсдену.

Метод, применявшийся для исследования, заключался в следующем: а-частицы, испускаемые источ­ником, диафрагмировались щелью попадали на экран из сернистого цинка. на котором получалось изображение щели в виде узкой полоски. Затем между щелью и экраном помещали тон­кую металлическую пластинку, изобра­жение щели размывалось, что указывало на рассеяние а-частиц веществом пластинки. Исследуя угол рассеяния, Гейгер установил, что наиболее вероятный угол рассеяния пропорционален атомному весу и обратно пропорционален кубу скорости частицы.

Но наиболее поразительным ока­зался факт, открытый Гейгером и Марсденом в 1909 г., — существование боль­ших углов рассеяния. Некоторая, очень небольшая часть а-частиц (примерно 1/8000) рассеивается на угол, больший прямого, отбрасываясь, таким образом обратно к источнику. Тонкая пластине отбрасывала частицы, летящие с боль­шой скоростью. Как раз в том же, 1909 году Резерфорд и Ройдс неопровержимо доказали, что а-частицы являются дважды ионизированными атомами ге­лия. Для таких тяжелых быстро движу­щихся частиц рассеивание на углы большие прямого, казалось весьма не­вероятным. Резерфорд говорил, что это так же невероятно, как если бы пуля отскакивала от листа папиросной бумаги.

Одно из возможных объяснений аномального рассеяния состояло в том что оно складывается из многих неболь­ших углов отклонений, вызванные атомами рассеивающего вещества.

Исходя из модели Томсона, Резер­форд подсчитал, что это не может да­вать больших отклонений даже при многих столкновениях с частицей. И здесь Резерфорд обратился к плане­тарной модели.

Когда а-частица проходит мимо заряженного ядра, то под воздействием кулоновской силы, пропорциональной заряду ядра и заряду а-частицы и обратно пропорциональной квадрату расстояния между ними, она движется по гиперболе, удаляясь по ее ветви после прохождения мимо ядра. Ее прямолинейный путь, таким обра­зом, искривляется, и она отклоняется на угол рассеяния ф.

1 марта 1911 г. Резерфорд сделал в философском обществе в Манчестере доклад «Рассеяние а- и b-лучей и строение атома». В докладе он говорил: «Рассеяние заряжен­ных частиц может быть объяснено, если предположить такой атом, кото­рый состоит из центрального электри­ческого заряда, сосредоточенного в точке и окруженного однородным сфе­рическим распределением противо­положного электричества равной ве­личины. При таком устройстве атома а- и b-частицы, когда они проходят на близком расстоянии от центра атома, испытывают большие отклонения, хотя вероятность такого отклонения мала».


Страница: