Структура и методы анализа ДНК
Рефераты >> Медицина >> Структура и методы анализа ДНК

2. Выделение ДНК, ее синтез и рестрикция.

ДНК может быть изолирована из любого типа тканей и клеток, содержащих ядра. Этапы выделения ДНК включают быстрый лизис клеток, удаление с помощью центрифугирования фрагментов клеточных органелл и мембран, ферментативное разрушение белков и их экстрагирование из раствора с помощью фенола и хлороформа, концентрирование молекул ДНК путем преципитации в этаноле. Из 1 грамма сырой ткани или из 10!9 клеток обычно получают 2 миллиграмма ДНК. У человека ДНК, чаще всего, выделяют из лейкоцитов крови, для чего собирают от 5 до 20 мл венозной крови в стерильную пробирку с раствором, препятствующим коагуляции (например, с глюгециром или гепарином). Затем отделяют лейкоциты и разрушают клеточные и ядерные мембраны добавлением буферных растворов, содержащих денатурирующие агенты. Наилучшие результаты при выделении ДНК дает применение протеиназы-К с последующей фенол - хлороформной экстракцией разрушенных белков. ДНК осаждают в этаноле и растворяют в буферном растворе. Оценку качества экстрагированной ДНК проводят на основании измерения оптической плотности раствора ДНК в области белкового и нуклеинового спектров поглощения. В чистых образцах ДНК соотношение А(260)/A(280) > 1.8. В противном случае процедуру очистки необходимо повторять, так как для успешного использования и хранения ДНK белки должны быть полностью удалены. Более подробно с методами выделения и очистки ДНК из различных тканей можно ознакомиться в работах и руководствах, приведенных в конце книги (Маниатис и др., 1984; Дейвис, 1990; Горбунова и др., 1991).В процессе сложного и многообразного функционирования различные участки хромосом и ДНК претерпевают разнообразные регулируемые и, в основе своей, обратимые изменения. Эти мо-дификации осуществляются с помощью специальных белков - ферментов. Описание ферментативного аппарата репликации, транскрипции, репарации - системы защиты и восстановления поврежденных участков ДНК, рекомбинации, то есть обмена участками гомологичных хромосом и ДНК, далеко выходит за рамки нашего изложения. Мы кратко ознакомимся только с двумя классами ферментов ДНК - полимеразами и рестриктазами, особенно важными для понимания основ современной молекулярной диагностики.Ферменты, осуществляющие синтез ДНК, называются ДНК-полимеразами. И в бактериальных клетках, и в клетках эукариот содержатся три различные формы ДНК-полимераз, все они обладают синтезирующей активностью и способны удлинять цепи ДНК в направлении 5' - 3', последовательно наращивая по одному нуклеотиду к 3'-OH концу, причем точность синтеза определяется специфичностью спаривания оснований. Таким образом, для работы ДНК-полимеразы необходима однонитевая матричная ДНК с двухнитевым участком на 3'- конце молекулы. Кроме того, в среде должны присутствовать четыре типа трифосфатов (dATP,dCTP, dGTP и dTTP) - молекул, состоящих из основания -A,C,G или T, сахара - дезоксирибозы (d) и трех фосфатных остатков (P). В клетках эукариот репликацию осуществляет ДНК-полимераза альфа, а в клетках E. coli - ДНК-полимераза 111.ДНК-полимеразы обладают различными активностями, в том числе и экзонуклеазной в направлении 3' - 5', что позволяет им исправлять - репарировать, дефекты, допущенные при подборе комплементарных оснований. ДНК-полимераза 1 E. coli способна инициировать репликацию в месте разрыва ДНК и замещать гомологичный участок в двойной цепи ДНК. Это свойство используется для введения в ДНК меченых нуклеотидов методом ник-трансляции.

Открытие бактериальных ферментов, обладающих эндонуклеазной активностью - рестрикционных эндонуклеаз или рестриктаз, значительно продвинуло исследование структуры ДНК и возможности генноинженерного манипулирования с молекулами ДНК. In vivo эти ферменты участвуют в системе распознования и защиты "своих" и уничтожении чужеродных ДНК. Рестриктазы узнают специфические последовательности из 4 - 6, реже 8 - 12 нуклеотидов в двухцепочечной молекуле ДНК и разрезают ее на фрагменты в местах локализации этих последовательностей, называемых сайтами рестрикции. Количество образующихся рестрикционных фрагментов ДНК определяется частотой встречаемости сайтов рестрикции, а их размер - характером распределения этих сайтов по длине исходной молекулы ДНК. Чем чаще расположены сайты рестрикции, тем короче фрагменты ДНК после рестрикции. В настоящее время известно более 500 различных типов рестриктаз бактериального происхождения, причем каждый из этих ферметов узнает свою специфическую последовательность. Рестриктазы выделяют путем биохимической очистки из различных видов бактерий и обозначают тремя буквами, соответствующими первым трем буквам латинского названия вида бактерий, и римской цифрой, соответствующей хронологии открытия этого фермента у данного вида бактерий. В зависимости от частоты встречаемости сайтов рестрикции в молекуле ДНК различают три класса рестриктаз часто-, средне- и редкощепящие. Естественно, что рестриктазы, узнающие длинные специфические последовательности (8-12 п.о.), как правило, являются редкощепящими (например Nor1), а узнающие короткие (4-5 п.о.) - частощепящими (Taq1, EcoR1).Сайты рестрикции могут быть использованы в качестве генетических маркеров ДНК. Действительно, образующиеся в результатае рестрикции фрагменты ДНК могут быть упорядочены по длине путем электрофореза в агарозном или полиакриломидном геле, и тем самым может быть определена их молекулярная масса, а, значит, и физическое расстояние между сайтами. Напомним, что обычным методом выявления ДНК в геле, также как и РНК, является ее специфическое окрашивание, чаще всего этидиумом бромидом, и просмотр геля в проходящем ультрофиолете. При этих условиях места локализации ДНК имеют красную окраску. При использовании для рестрикции нескольких эндонуклеаз с последующим электрофоретическим анализом перекрывающихся аддитивных по длине фрагментов ДНК можно добиться полного упорядочивания сайтов узнавания для каждого из ферментов относительно друг друга и каких-то иных маркеров, присутствующих в исследуемой молекуле ДНК. Процесс этот называется физическим картированием и является обязательным элементом анализа плазмидных, вирусных, бактериальных ДНК и относительно небольших фрагментов ДНК эукариот. На рис.1.2. представлен простейший пример такого картирования в том случае,когда в исследуемой молекуле ДНК присутствует по одному сайту рестрикции для двух эндонуклеаз. После обработки исходной ДНК отдельно каждой из рестриктаз образуется два фрагмента, соответствующих по длине расстоянию от концов молекулы ДНК до сайтов рестрикции. При совместной обработке обеими эндонуклеазами на электрофореграмме появляется новый фрагмент,размер которого соответствует расстоянию между сайтами рестрикции. Очевидно, что эти данные еще не позволяют однозначно определить положение сайтов рестрикции по отношению к концам молекулы ДНК. Однако, достаточно знать расположение хотя бы одного маркера для того, чтобы произвести точное физическое картирование исходной молекулы ДНК независимо от количества локализованных в ней сайтов рестрикции.При обработке тотальной геномной эукариотической ДНК, в частности ДНК человека, часто- или среднещепящими эндонуклеазами образуется так много фрагментов различной длины (в среднем, порядка 1 миллиона), что их не удается разделить с помощью электрофореза, то есть не удается визуально идентифицировать отдельные фрагменты ДНК на электрофореграмме. После электрофореза рестрцированной геномной ДНК получается равномерное окрашивание по всей длине геля - так называемый шмер. Идентификация нужных фрагментов ДНК в таком геле возможна только путем гибридизации с мечеными ДНК-зондами. Это достигается при помощи метода блот-гибридизации по Саузерну.


Страница: