Металлические материалыРефераты >> Металлургия >> Металлические материалы
При испытании серого и высокопрочного чугунов определяют предел прочности при растяжении, изгибе и сжатии, а при испытании ковкого чугуна – предел прочности при растяжении, относительное удлинение и твердость.
При маркировке серого и модифицированного чугуна, например СЧ12-28, первые две цифры обозначают предел прочности при растяжении, последующие две – предел прочности при изгибе. [2, стр. 325-326]
Цветные металлы и сплавы.
Сплавы цветных металлов применяют для изготовления деталей, работающих в условиях агрессивной среды, подвергающихся трению, требующих большой теплопроводности, электропроводности и уменьшенной массы.
Медь – металл красноватого цвета, отличающийся высокой теплопроводностью и стойкостью против атмосферной коррозии. Прочность невысокая: σв = 180 .240 МПа при высокой пластичности δ>50%.
Латунь – сплав меди с цинком (10 .40 %), хорошо поддается холодной прокатке, штамповке, вытягиванию σв=250 .400 МПа, δ=35 .15%. При маркировке латуней (Л96, Л90, ., Л62) цифры указывают на содержание меди в процентах. Кроме того, выпускают латуни многокомпонентные, т.е. с другими элементами (Мn, Sn.Pb.Al).
Бронза – сплав меди с оловом (до 10%), алюминием, марганцем, свинцом и другими элементами. Обладает хорошими литейными свойствами (вентили, краны, люстры). При маркировке бронзы Бр.ОЦСЗ-12-5 отдельные индексы обозначают: Бр – бронза, О – олово, Ц – цинк, С – свинец, цифры 3, 12, 5 – содержание в процентах олова цинка, свинца. Свойства бронзы зависят от состава: σв=150 .2Ю МПа, δ=4 .8%, НВ60 (в среднем).
Алюминий – легкий серебристый металл, обладающий низкой прочностью при растяжении – σв =80 .100 МПа, твердостью – НВ20, малой плотностью – 2700 кг/м3, стоек к атмосферной коррозии. В чистом виде в строительстве применяют редко (краски, газообразователи, фольга). Для повышения прочности в него вводят легирующие добавки (Мn, Сn, Mg, Si, Fe) и используют некоторые технологические приемы. Алюминиевые сплавы делят на литейные, применяемые для отливки изделий (силумины), и деформируемые (дюралюмины), идущие для прокатки профилей, листов и т.п.
Силумины – сплавы алюминия с кремнием (до 14%), они обладают высокими литейными качествами, малой усадкой, прочностью σв = 200 МПа, твердостью НВ50 .70 при достаточно высокой пластичности δ=5 .10%. Механические свойства силуминов можно существенно улучшить путем модифицирования. При этом увеличивается степень дисперсности кристаллов, что повышает прочность и пластичность силуминов.
Дюралюмины— сложные сплавы алюминия с медью (до 5,5 %), кремнием (менее 0,8 %), марганцем (до 0,8 %), магнием (до 0,8 %) и др. Их свойства улучшают термической обработкой (закалкой при температуре 500 .520°С с последующим старением). Старение осуществляют на воздухе в течение 4 .5 сут при нагреве на 170СС в течение 4 .5 ч.
Термообработка алюминиевых сплавов основана на дисперсном твердении с выделением твердых дисперсных частиц сложного химического состава. Чем мельче частицы новообразований, тем выше эффект упрочнения сплавов. Предел прочности дюралюминов после закалки и старения составляет 400 .480 МПа и может быть повышен до 550 .600 МПа в результате наклепа при обработке давлением.
В последнее время алюминий и его сплавы все шире применяют в строительстве для несущих и ограждающих конструкций. Особенно эффективно применение дюралюминов для конструкций в большепролетных сооружениях, в сборно-разборных конструкциях, при сейсмическом строительстве, в конструкциях, предназначенных для работы в агрессивной среде. Начато изготовление трехслойных навесных панелей из листов алюминиевых сплавов с заполнением пенопластовыми материалами. Путем введения газообразователей можно создать высокоэффективный материал пеноалюминий со средней плотностью 100 .300 кг/м3. йг
Все алюминиевые сплавы поддаются сварке, но она осуществляется более трудно, чем сварка стали, из-за образования тугоплавких оксидов Аl2О3.
Особенностями дюралюмина как конструкционного сплава являются: низкое значение модуля упругости, примерно в 3 раза меньше, чем у стали, влияние температуры (уменьшение прочности при повышении температуры более 400°С и увеличение прочности и пластичности при отрицательных температурах); повышенный примерно в 2 раза по сравнению со сталью коэффициент линейного расширения; пониженная свариваемость.
Титан за последнее время начал применяться в разных отраслях техники благодаря ценным свойствам: высокой коррозионной стойкости, меньшей плотности (4500 кг/м3) по сравнению со сталью, высоким прочностным свойствам, повышенной теплостойкости. На основе титана создаются легкие и прочные конструкции с уменьшенными габаритами, способные работать при повышенных температурах. [2, стр.326-328]
ЛИТЕРАТУРА
1. Технология металлов и сварка. Под ред. П.И. Полухина. М. Высшая школа. 1977.
2. Строительные материалы. А.Г. Домокеев. М. Высшая школа. 1989
3. Большая советская энциклопедия. Под ред. А.М. Прохорова. М. изд. «Советская энциклопедия». 1974.