Кариотип человека
Рефераты >> Медицина >> Кариотип человека

У человека на идиограмме среди 46 хромосом различают три типа хромосом в зависимости от положения в хромосоме центромер:

1. Метацентрические — центромера занимает центральное поло­жение в хромосоме, оба плеча хромосомы имеют почти одинаковую длину;

2. Субметацентрические — центромера располагается ближе к одному концу хромосомы, в результате чего плечи хромосомы разной длины.

Классификация хромосом человека по размеру и расположению центромера

Группа хромосом

Номер по кариотипу

Характеристика хромосом

А(1)

1,2,3

1 и 3 почти метацентрические и 2—крупная субметацентрическая

В (11)

4,5

крупные субакроцентрические

С (III)

6—12

средние субметацентрические

A(lV)

13—15

средние акроцентрические

E(V)

16-18

мелкие субметацентрические

F(VI)

19—20

самые мелкие мегацентрические

G(VII)

21—22

самые мелкие акроцентрические

Х-хромосома (относится к III группе

23

средняя почти метацентрическая

Y-хромосома

23

мелкая акроцентрическая

3. Акроцентрические — центромера находится у конца хромосо­мы. Одно плечо очень короткое, другое длинное. Хромосомы не очень легко отличать одну от другой. Цитогенетики с целью унификации методов идентификации хромосом на конференции в 1960 г. в г. Ден­вере (США) предложили классификацию, учитывающую величину хромосом и расположения центромер. Патау в том же году дополнил эту классификацию и предложил разделить хромосомы на 7 групп. Согласно этой классификации, к первой группе А относятся крупные 1, 2 и 3 суб- и акроцентрические хромосомы. Ко второй группе В — крупные Субметацентрические пары 4—5. К третьей группе С относят­ся средние субакроцентрические (6—12 пары) и Х-хромосома, которая по величине находится между 6 и 7 хромосомами. К группе Д (чет­вертой) относятся средние акроцентрические хромосомы (13, 14 и 15 пары). К группе Е (пятой)— мелкие Субметацентрические хромосомы (16, 17 и 18 пары). К группе F (шестой) мелкие метацентрические (19 и 20 пары), а к группе G (седьмой) — самые мелкие акроцентрические хромосомы (21 и 22 пары) и мелкая акроцентрическая половая Y-хромосома (табл. 4).

Существуют и другие классификации хромосом (Лондонская, Па­рижская, Чикагская), в которых развиты, конкретизированы и до­полнены положения Денверской классификации, что в конечном итоге облегчает идентификацию и обозначение каждой из хромосом человека и их частей.

Акроцентрические хромосомы IV группы (Д, 13—15 пары) и груп­пы VII (G, 21—22 пары) на коротком плече несут маленькие дополнительные структуры, так называемые сателлиты. В некото­рых случаях эти сателлиты являются причиной сцепления хромосом между собой при делении клеток в мейозе, вследствие чего происходит неравномерное распреде­ление хромосом. В одной половой клетке оказывается 22 хромосомы, а в другой — 24. Так возникают моносомии и трисомии по той или иной паре хро­мосом. Фрагмент одной хромосомы мо­жет присоединиться к хромосоме дру­гой группы (например, фрагмент 21 или 22 присоединяется к 13 или 15). Так возникает транслокация. Трисомия 21-й хромосомы или транслокация ее фраг­мента являются причиной болезни Дауна.

Внутри семи этих групп хромосом на основании лишь внешних различий, видимых в простой микроскоп, провести идентификацию хромосом почти невоз­можно. Но при обработке хромосом акрихини притом и при помощи ряда дру­гих методов окраски их можно иден­тифицировать. Известны различные

способы дифференциальной окраски хромосом по Q-, G-, С-технике (А. Ф.Захаров, 1973) (рис. 27). Назовем некоторые методы идентифи­кации индивидуальных хромосом человека. Широко применяются раз­личные модификации так называемого метода Q. Например, метод QF — с использованием флюорохромов; метод QFQ — с использованием акрихина; метод QFH — с использованием специального красителя фир­мы «Хекст» № 33258, выявляющего повторяющиеся последовательности нуклеотидов в ДНК хромосом (сателлитную ДНК и т. п.). Мощным средством изучения и индивидуальной характеристики хромосом явля­ются модификации трипсинового метода GT. Назовем, например, GTG-метод, включающий обработку хромосом трипсином и окраску краси­телем Гимза, GTL-метод (обработка трипсином и окраска по Лейтману).

Известны методы с обработкой хромосом ацетатными солями и красителем Гимза, методы с использованием гидроокиси бария, акридиноранжа и другие.

ДНК хромосом выявляется при помощи реакции Фельгена, окраски метиловым зеленым, акридиноранжем, красителем № 33258 фирмы «Хекст». Акридиноранжевый краситель с ДНК однонитчатой образует димерные ассоциаты и дает красную люминесценцию, с двунитчатой спиральной ДНК образует одномерные ассоциаты и люминесцирует зеленым светом.

Измеряя интенсивность красной люминесценции, можно судить о количестве свободных мест в ДНП и хроматине, а отношение зеле­ная — красная люминесценция — о функциональной активности хро­мосом.

Гистоны и кислые белки хромосом выявляются при различных рН окраской бромфенодовым синим, зеленым прочным, серебрением, иммунолюминесцентным методом, РНК — окраской галлюцианиновыми квасцами, красителем фирмы «Хекст» № 1, акридиноранжем при нагревании до 60°.

Широко применяются электронная микроскопия, гистоавторадиография и ряд других методов.

В 1969 г. шведский биолог Т. Касперссон и его сотрудники пока­зали, что хромосомы, окрашенные горчичным акрихином и освещенные под микроскопом Наиболее длинноволновой частью ультрафиолетового спектра, начинают люминесцировать, причем одни участки хромосом светятся ярче, другие слабее. Причина этого — разный химический состав поверхности хромосомы. В последующие годы исследователи обнаружили, что концы Y-хромосомы человека светятся ярче любой другой хромосомы человека, поэтому Y-хромосому легко заметить на препарате.


Страница: