Кариотип человека
Дифференциальность конденсации участков хромосомы — одна из существенных ее характеристик, наиболее полно выраженная в интерфазном ядре. В естественных условиях течения митоза хромосомные участки, резко различающиеся по степени конденсации в период интерфазы, в метафазе выглядят практически одинаково. Лишь при специальных способах световой или электронной микроскопии удается обнаружить неоднородную линейную структуру внешне гомогенной метафазной
хромосомы (Bahr, Larsen, 1974). Выравнивание циклов конденсации в разных участках хромосом можно затормозить искусственно. С этой целью особенно успешно применяется 5-бромдезоксиуридин (А. Ф. Захаров, 1973, 1977;
Dutrillaux, Lejeune, 1975). В присутствии этого вещества хромосомы вступают в метафазу неравномерно уплотненными по своей длине. В результате тщательного изучения их морфологии показано, что каждая хромосома человека имеет строго постоянное и специфическое чередование нормально и слабо конденсированных участков и по этому признаку может быть идентифицирована.
Внутрихромосомная асинхронность репликации ДНК является второй важнейшей чертой линейной неоднородности хромосомы, которая может быть выявлена в метафазе митоза. В течение полутора десятков лет эта черта хромосомной организации была доступна изучению методом радиоавтографии хромосом (под ред. А. А. Прокофьевой-Бельговской, 1969; А. Ф. Захаров, 1977; Giannelli, 1970, 1974). На основе этого метода были вскрыты принципиальные закономерности репродукции хромосом человека, среди которых асинхронность репродукции разных участков хромосомы, постоянство и специфичность порядка репродукции для данной хромосомы являются важнейшими. Однако идентификацию индивидуальных хромосом радиоавтография продвинула меньше, чем этого ожидали. На радиоавтографах дополнительно удается различить аутосомы 4 и 5, 13, 14 и 15, 17 и 18. В женских клетках одна из двух Х-хромосом отличается поздним началом и поздним окончанием синтеза ДНК. Несмотря на ограниченность данных, получаемых методом радиоавтографии, этот прием оказался исключительно полезным в улучшении идентификации аномалий указанных хромосом и помог в выделении нескольких новых самостоятельных синдромов в хромосомной патологии.
Существенный прогресс в изучении последовательности синтеза ДНК по длине каждой хромосомы человека в норме, ее взаимосвязи с другими характеристиками хромосомной организации, ее состояния в случаях численных или структурных изменений в хромосомном наборе происходит в настоящее время благодаря использованию в качестве предшественника синтеза ДНК аналога тимидина — 5-бромдезоксиуридина. Ослабленная способность к окрашиванию участков хромосомы, включивших этот предшественник, вооружила цитогенетиков точным методом изучения хронологии хромосомной репродукции, возможности которого лимитируются лишь разрешающей способностью световой микроскопии. Репликационная структура всех хромосом человека выявляется с предельной ясностью, и она может быть описана в четких морфологических терминах.
Каждая хромосома состоит из участков, реплицирующихся в разное время. Имеется четкое чередование районов с ранней и поздней репликацией. В метафазной хромосоме
такие участки хорошо различимы с помощью светового микроскопа. Специфичность репликационной структуры каждой хромосомы складывается из индивидуальности размеров, числа и взаимного расположения различающихся хромосомных районов (рис. 9).
В отличие от изложенных выше двух феноменов неравномерного окрашивания хромосом по длине, вызванного включением в ДНК 5-бромдезоксиуридина, под дифференциальной окрашиваемостью хромосом подразумевается способность к избирательному окрашиванию по длине хромосомы, не модифицированной прижизненно какими-либо воздействиями. Дифференциальное окрашивание хромосом в этом случае обеспечивается сравнительно простыми температурно-солевыми воздействиями на фиксированную хромосому.
Важно отметить, что при всем разнообразии подобных обработок хромосомных препаратов после фиксации и применяемых флуорохромных или нефлуоресцирующих красителей выявляемая линейная неоднородность хромосомы всегда одна и та же. Ее рисунок меняется только в зависимости от степени уплотненности хромосомы: в более длинных, слабее сокращенных хромосомах становится заметной дальнейшая неоднородность тех сегментов, которые выглядели гомогенно окрашенными в сильно конденсированных хромосомах. Дифференциальное окрашивание может наблюдаться либо по всей длине хромосомы (Q-, G- и R-сегменты), либо в ее центромерном районе (С-сегменты).
Наиболее ясное представление о рисунке дифференциального окрашивания хромосом по всей длине можно получить при окраске препаратов по G-методике, используя краситель Гимзы (рис. 10). На таких препаратах хромосомы выглядят поперечно исчерченными, по-разному окрашенными сегментами («banding»). Рисунок каждой пары хромосом является специфичным для нее. Размеры сегментов неодинаковые. В мелких хромосомах групп F и G рисунок образуется единичными сегментами, в крупных хромосомах их много. Общее количество окрашенных и неокрашенных сегментов в нормальном хромосомном наборе средней степени конденсации, в соответствии с Парижской номенклатурой, равно 322. В прометафазных хромосомах их число увеличивается до 1000 и более.
На Парижской конференции по номенклатуре в цитогенетике человека была разработана и в настоящее время вошла в практику цитогенетического анализа система обозначения сегментов нормальных хромосом и хромосом, подвергшихся тем или иным структурным перестройкам (Paris Conference, 1971). На рис. 11 приведен пример этой системы для аутосомы 1.
Независимо от того, как решается вопрос о природе дифференциальной окрашиваемости хромосом, основанные на этом феномене цитологические карты имеют исключительное значение для развития цитогенетики человека. С их помощью удается отнести генетические маркеры не просто к тому или иному хромосомному плечу, а к определенному району хромосомы. В медицинской цитогенетике стало реальным выявление происхождения аномальных хромосом вплоть до точного описания районов.
Второй вид дифференциального окрашивания хромосом вскрывает специфичность околоцентромерных районов в хромосомах человека. В разных хромосомах размеры С-сегментов разные, они особенно велики в аутосомах 1, 9 и 16. Однако идентифицировать по этой окраске сходные по величине и форме хромосомы не удается. В Y-хромосоме С-хроматин локализуется в дистальной части длинного плеча. В одной и той же хромосоме у разных индивидов его содержание может различаться.
Глава 2. Мейотические хромосомы.
Мейоз объединяет серию различных процессов, в ходе которых первичные зародышевые клетки дифференцируются в зрелые половые клетки. В начале этой серии сперматогонии (оогонии) превращаются в первичные сперматоциты (ооциты). Центральным событием является первое мейотическое деление сперматоцита (ооцита), в ходе которого хромосомы испытывают особенно сложные специфические преобразования в период профазы. Первая мейотическая профаза разделяется, как известно, на пять стадий: лептотену, зиготену, пахитену, диплотену и диакинез. В отличие от митоза, профаза которого в цитогенетическом анализе практически не используется, профазные хромосомы первого мейотического деления представляют очень большой интерес для цитоге-нетики человека. Метафазные хромосомы первого мейотического деления, являющиеся бивалентами гомологичных хромосом, представляют собой менее дифференцированные структуры по сравнению с метафазными митотическими хромосомами. Хромосомы второго мейотического деления почти не используются в цитогенетике человека.