Превращение микроорганизмами соединений фосфора, серы и железа
Фотосинтезирующие зеленые и пурпурные серобактерии (фотолитотрофы) в анаэробных условиях окисляют сероводород до серы, которая затем может превращаться в сульфаты. Они имеют округлую, палочковидную или извитую форму. Имеются виды, длина клеток которых достигает 100 мкм. Окислять серу в присутствии органических веществ способны и некоторые гетеротрофные микробы – Bac. Subtilis, Bac. Mesentericus, актиномицеты, дрожжи.
В зонах анаэробиоза – в глубоких водоемах (некоторых морях, лиманах, озерах), а также в затопляемых, сильно увлажненных почвах, – происходит восстановление сульфатов до сероводорода. Такой процесс получил название десульфофикации (сульфатредукции). Сероводород – сильный яд, и при наличии его в среде больших количествах погибает все живое. Так в Черном море на глубине более 200 м концентрация сероводорода сильно возрастает и создаются условия, неблагоприятные для жизни. Продукты восстановления соединений серы образуются на морском дне, куда в большом количестве оседает органическое вещество.
Сульфатредукция осуществляется микроорганизмами двух родов: Desulfovibrio и Desulfotomaculum. Их клетки не окрашиваются по Граму, но отличаются по форме и некоторым другим признакам. Представители рода Desulfovibrio – вибрионы, монотрихи – не образуют спор, растут при температуре около 30°C (мезофилы). Микробы рода Desulfotomaculum имеют палочковидную форму, образуют споры (бациллы), перитрихи и растут при температуре от 30 до 55°C. Один из видов этого рода – D. nigrificans – термофил (оптимальная температура роста 55°C), остальные: D. ruminis и D. orientis – мезофилы (оптимальная температура роста 30 – 37 °C).
Микроорганизмы, восстанавливающие соединения серы, – облигатные анаэробы. В таких условиях они в качестве конечного акцептора водорода используют сульфат. Донором водорода служат различные органические соединения и молекулярный водород. Процесс окисления органических соединений идет не до конца, основным продуктом бывает уксусная кислота, а побочным – сероводород. Образовавшийся газ может затем окисляться серобактериями, в результате чего накапливается биогенная сера.
Наряду с термофилами, ацидофилами, галофилами, метанобразующими и другими микроорганизмами обнаружены и серобактерии, которые отнесены к третьей линии эволюции организмов – архебактериям. Среди них определенный интерес представляет род Sulfolobus (Brock, Belly, Weiss, 1972).
Клетки этого рода имеют округлую форму. Не образуют спор и жгутиков, но имеют пили. Не окрашиваются по Граму. Их стенка не содержит пептидогликана (муреина), а состоит из гликопротеиновых гексагонально расположенных субъединиц. Устойчивы к некоторым антибиотикам, ингибирующим синтез пептидогликана. Трехслойная цитоплазматическая мембрана не содержит липидов (как и у других архебактерий), они заменены изопреноидными и гидроизопреноидными насыщенными углеводородами и простыми изопрениглицериновыми эфирами. Растут в аэробных условиях. На жидких средах образуют муть и нежную пленку. На агаре или полисиликатном геле – колонии беспигментные, гладкие и блестящие. Все виды Sulfolobus в присутствии углерода диоксида используют в качестве источника энергии элементарную серу, окисляют ее до серной кислоты и тем самым понижают pH среды до 1–1,5. Они аборигены высокотемпературных кислых экотопов вулканического происхождения – горячих источников и почв (сольфатар). Такие экотопы содержат много сульфидов и серы. Это богатейшие серой кислые почвы Йеллоустонского национального парка США, Исландии, Новой Зеландии, Курильской гряды, Камчатки и других мест.
Бактерии рода Sulfolobus могут быть использованы для выщелачивания металлов при высоких температурах из таких трудноокисляемых сульфидов, как пирит, халькопирит, молибден и др., а также удаления серных компонентов из каменного угля.
Окисление неорганических восстановленных соединений серы с помощью фототрофных и хемотрофных эубактерий является одним из звеньев круговорота серы в природе. В первом случае процесс протекает в анаэробных условиях, во втором – в аэробных. Хемотрофы, окисляющие серу, обитают в морских и пресных водах, содержащих O2, в аэробных слоях почв разного типа. Поскольку эта группа объединяет организмы с разными физиологическими свойствами, ее представителей можно обнаружить в кислых горячих серных источниках, кислых шахтных водах, в водоемах со щелочной средой и высокой концентрацией NaCl.
Хемолитотрофные серобактерии обнаружены на глубине 2600 – 6000 м в местах, где на поверхность дна океана из недр земной коры выходят горячие источники. Вода источников, называемая геотермальной жидкостью, имеет температуру до 350°, не содержит совсем O2 и NO3-, но обогащена H2S, CO2 и NH4+. На дне океана гидротермальная жидкость смешивается с окружающей морской водой, имеющей температуру 2°, которая наоборот не содержит H2S и характеризуется достаточно высоким уровнем O2 и NO3-. Эти области отличаются также высоким давлением и полным отсутствием света.
Вокруг выходов геотермальной жидкости были обнаружены плотные скопления необычных беспозвоночных животных. Наличие таких «оазисов» жизни объясняется присутствием бактерий, среди которых были виды H2S-окисляющие хемолитоавтотрофы (Thiomicrospira и Thiobacillus). Такие бактерии составляют первое звено трофической цепи в экосистеме гидротермальных источников, обеспечивая пищей различные виды животных.
Одно из преобладающих животных R. pachyptila не может питаться частичками пищи, поскольку представляет собой просто замкнутый мешок без ротового, анального отверстий и пищеварительной системы. На переднем конце тела животного располагаются ярко окрашенные щупальца. В мешке заключены внутренние органы, самый крупный из них, занимающий почти всю полость тела, – трофосома, в которой обнаружено множество бактерий, окисляющих H2S, запасающих энергию в молекулах АТФ и использующих ее затем для фиксации CO2 в восстановительном пентозофосфатном цикле. Бактерии локализованы внутри клеток трофосомы. R. pachyptila получает от бактерий органические соединения, а в обмен поставляет им необходимые для осуществления хемолитоавтотрофного метаболизма вещества (CO2, O2, H2S), поглощая их из внешней среды щупальцами (темно-красный цвет обусловлен присутствием большого количества крови, богатой гемоглобином), откуда они по кровеносной системе переносятся в трофосому к бактериям. Таким образом, отношения между R. pachyptila и серобактериями – типичный пример внутриклеточного симбиоза.
Симбиозы, подобные описанному выше, обнаружены в других местах, богатых H2S, в том числе в мангровых и травяных соленых болотах, у мест просачивания нефти, в районах сброса сточных вод.
Большое экономическое значение имеет косвенный результат жизнедеятельности сульфатредуцирующих бактерий (Desulfovibrio) – анаэробная коррозия железа. Во влажной среде ионизация железа может происходить и в анаэробных условиях: