Активные диэлектрики
Рефераты >> Радиоэлектроника >> Активные диэлектрики

При дальнейшем росте температуры активизация колебаний ионов решетки приводит к снижению электропроводности. Это явление имеет ту же природу, что и снижение электропроводности при нагреве металлов.

В металлах нагрев ведет к активизации колебаний узлов кристаллической решетки, в результате чего кристаллическая решетка локально искажается. Известно, что основными носителями заряда в металлах являются электроны. Движение электронов в металлах с плотноупакованной кристаллической решеткой удобно представить в виде движения электронной волны. При взаимодействии электронной волны с узлами кристаллической решетки электронная волна передает энергию ионам, находящимся в узлах решетки. Поглотив энергию электронной волны, ионы возбуждаются, колеблются и распространяют во все стороны дифрагированные электронные волны. Дифрагированные волны интерферируют, и образуется новая волна. В том случае, когда кристаллическая решетка правильна, ионы являются когерентными источниками дифрагированные волн, поэтому амплитуды дифрагированных волн суммируются, и формируется новая волна, амплитуда которой равна амплитуде исходной волны (см. рис. 11).

Энергия волны пропорциональна квадрату ее амплитуды, таким образом, в правильной кристаллической решетке электронная волна движется без потерь, и удельное электрическое сопротивление материала с идеальной кристаллической решеткой равно нулю. Появление в кристаллической решетке дефектов приводит к смещению некоторых ионов из равновесных положений, и дифрагированные волны становятся некогерентными (рис. 11). При сложении некогерентных волн амплитуда результирующей волны оказывается меньше амплитуды падающей волны, в результате у металла удельное электрическое сопротивление становится отличным от нуля. С ростом температуры происходит локальное искажение кристаллической решетки металлов, а следовательно, увеличивается удельное электрическое сопротивление.

В суперионных проводниках носителями заряда являются ионы, движение которых также можно представить в виде движения волны ионов. Аналогичным образом удельное электрическое сопротивление суперионных проводников растет при локальном искажении остова решетки, на котором дифрагирует ионная волна.

Дальнейшее повышение температуры приводит к полному плавлению кристалла, то есть тепловая энергия сравнивается с работой выхода ионов из самых глубоких потенциальных ям. Поэтому проводимость суперионных проводников вновь возрастает. Рост температуры повышает кинетическую энергию ионов и уменьшает их электростатическое взаимодействие. Поэтому рост температуры после полного плавления суперионных проводников ведет к росту проводимости.

Открыты суперионные проводники были в 1912 году при исследовании свойств галогенидов серебра. При этом было обнаружено, что кристаллы иодида серебра проявляют необычные свойства (резкий рост электропроводности) при нагреве. У кристаллов фторида и хлорида серебра таких свойств нет. Несколько позже были открыты суперионных проводников соединений меди. Длительное время медь и серебро считались «магическими» металлами, соединения которых могут проявлять свойства суперионных проводников. Однако, после того как была понята природа явления, были открыты и другие материалы со свойствами суперионных проводников. Разберем природу проявления данного явления подробнее.

У серебра и йода довольно-таки большая разница в размерах ионов, поэтому, хотя у иодида серебра кристаллическая решетка такая же, как у фторида серебра, упругие искажения кристаллической решетки велики. Следовательно, потенциальная яма для ионов серебра в решетке иодида серебра мельче, чем в решетке фторида серебра. Поэтому у иодида серебра проявляется эффект суперионных проводников. Итак, для проявления данного эффекта необходимы два условия: наличие ионной связи и большая разница в размерах ионов. Следовательно, свойствами суперионных проводников будут обладать окислы редкоземельных металлов, в которых носителями зарядов будут являться ионы кислорода; алюминат натрия, в котором носителями заряда являются ионы натрия, и так далее.

На основе суперионных проводников можно создавать целый ряд интересных технических устройств. Одним из первых (и самых курьезных) предложений по применению суперионных проводников была идея знаменитого теоретика, открывшего третье начало термодинамики, Нернста. Он предложил использовать окислы редкоземельных металлов для изготовления нитей накаливания ламп освещения. Идея была запатентована, и производители ламп накаливания выкупили патент, причем совершенно зря выкупили. Переход в состояние суперионных проводников у оксидов редкоземельных металлов наблюдается при температурах, превышающих 600 °С. Иначе говоря, для того чтобы включить такую лампочку, нужно предварительно разогреть спираль до 600 °С. Для того, чтобы свет испускаемый лампочкой, был как можно ближе к солнечному спектру, температура нити накаливания должна быть 2400 – 2600 °С, следовательно, достаточно трудно, вернее, невозможно, найти материал для подогревателя спирали, который работал бы при таких температурах в окислительной среде.

Тем не менее, суперионные проводники на основе окислов редкоземельных металлов активно используются в технике. На их основе делают высокотемпературные датчики температур, а также анализаторы газов. Поскольку основными носителями заряда в таких материалах являются ионы кислорода, то сопротивление зависит не только от температуры, но и от парциального давления кислорода в окружающей среде.

Помимо изготовления датчиков, суперионные проводники можно использовать для изготовления других технических устройств: ячеек памяти, конденсаторов сверхбольшой емкости – ионисторов, аккумуляторов и др.

Для изготовления ячеек памяти в расплав суперионного проводника помещают два угольных электрода, причем на один из электродов предварительно напыляют металл, ионы которого являются носителями заряда в суперионном проводнике. В рассмотренном примере на один электрод нанесено серебро, а суперионным проводником является иодид серебра. При прило­жении положительного потенциала на электрод с нанесенным серебром, серебро начинает растворяться, ионы серебра переходят в суперионный проводник, и переносятся на другой электрод. После того как слой серебра перенесется на другой электрод, ток через ячейку прекратится. Подпись: Рисунок 11 Схема ячейки памятиДля возоб­новления тока необходимо поменять полярность электродов.

Если на электроды не наносить слой металла, то при приложении электрического поля подвижные ионы смещаются от одного из электродов, и в суперионном проводнике появляется запирающий слой. Иначе говоря, ячейка превратилась в конденсатор. Емкость конденсатора пропорциональна поверхности электродов и диэлектрической проницаемости и обратно пропорциональна расстоянию между электродами или толщине запирающего слоя. Поскольку поверхность одного из электродов можно сделать очень большой, используя в качестве электрода активированный уголь, толщина запирающего слоя невелика – 30-40 межатомных расстояний, а величина диэлектрической проницаемости ионных соединений достаточно велика, то емкость полученных конденсаторов достигает очень больших величин, при этом размеры конденсатора достаточно малы. Ионистор с рабочем напряжением 30 В и емкостью в 1 фараду по размерам напоминает ириску.


Страница: