Активные диэлектрикиРефераты >> Радиоэлектроника >> Активные диэлектрики
Наряду с прямым пьезоэффектом, наблюдается и обратный пьезоэффект, когда под действием электрического поля возникает механическая деформация кристалла, причем величина механической деформации прямо пропорциональна напряженности электрического поля.
Обратный пьезоэффект не следует смешивать с электрострикцией – деформацией диэлектриков под действием электрического поля. Электрострикция наблюдается как в твердых диэлектриках, так и жидких, тогда как пьезоэффект наблюдается только в твердых диэлектриках с определенной кристаллической структурой. Кроме того, при электрострикции наблюдается квадратичная зависимость между напряженностью поля и деформацией, а при пьезоэффекте – зависимость линейная.
Пьезоэлектрический эффект наблюдается только тогда, когда кристаллическая решетка несимметрична. Отсутствие центра симметрии кристаллической решетки является необходимым, но недостаточным условием появления пьезоэлектрического эффекта.
|
|
где: qs – поверхностная плотность зарядов, Р – поляризация, s - механические напряжения.
Для случая обратного пьезоэффекта пьезомодуль связывает величину относительной деформации кристалла с напряженностью электрического поля
( 4)
Важно отметить, что приведенные соотношения имеют лишь качественный характер. Реальное описание пьезоэлектрического эффекта намного сложнее. Дело в том, что механическое напряжение является тензорной величиной, имеющей шесть независимых компонентов, тогда как поляризация является векторной величиной. Поэтому пьезомодуль, устанавливающий связь между вектором поляризации и механическими напряжениями, является тензором третьего ранга, имеющим 18 независимых компонентов. В тензорной форме уравнение прямого и обратного пьезоэффектов принимает следующий вид:
( 5)
( 6)
где i = 1,2,3 – компоненты вектора поляризованности; j = 1,2…6 – компоненты тензора механических напряжений или деформаций.
Помимо пьезомодуля еще одной важной характеристикой пьезоэлектриков является коэффициент электромеханической связи k. Квадрат этого коэффициента представляет собой отношение механической энергии к полной электрической энергии полученной от источника питания.
Пьезоэлетрические материалы
В настоящее время известно большое количество веществ, обладающих пьезоэлектрическими свойствами, в том числе – все сегнетоэлектрики. Однако не все пьезоэлектрические материала нашли техническое применение.
Одним из наиболее известных пьезоэлектриков является монокристаллический кварц – безводный диоксид кремния, кристаллизующийся в тригонально-трапецоэдрическом классе гексагональной сингонии. Крупные природные прозрачные кристаллы кварца получили название горного хрусталя. В кристаллах кварца принято различать три главные оси: Х – ось, проходящую через вершины шестиугольника поперечного сечения (таких осей 3); Y - ось, перпендикулярную осям шестиугольника поперечного сечения (таких осей также три); Z – ось, проходящую через вершины кристалла.
Пластинки кварца, вырезанные перпендикулярно оси Z, не обладают пьезоэлектрическим эффектом. Наибольший эффект наблюдается в пластинках, вырезанных перпендикулярно оси Х.
Природные кристаллы кварца, как правило, содержат дефекты, снижающие их ценность. Поэтому основные потребности пьезотехники удовлетворяются искусственными кристаллами, выращиваемыми из насыщенных кремнием щелочных растворов.
Помимо кварца, в качестве материалов для пьезоэлектрических элементов широко используют ниобат и танталат лития. По своей природе данные материалы являются сегнетоэлектриками. Для придания им пьезоэлектрических свойств производят отжиг в сильном электрическом поле, что проводит к созданию монодоменного состояния.
Аналогичным образом можно перевести в пьезоэлектрическое состояния сегнетокерамику. Поляризованную сегнетокерамику называют пьезокерамикой. Пьезокерамика имеет перед монокристаллами то преимущество, что из нее можно изготовить активный элемент любой формы и размера. В качестве материала для пьезокерамики используют твердые растворы на основе титаната бария, титаната-цирконата свинца, метаниобата свинца.
Пьезокерамические материалы принято разделять на четыре функциональные группы. Материалы группы 1 используют для изготовления высокочувствительных элементов, работающих в режиме приема или излучения механических колебаний. Для таких материалов необходим большой пьезомодуль. Материалы группы 2 используют для изготовления генераторов сильных сигналов, работающих в условиях сильных электрических полей или высоких механических напряжений. Для таких материалов необходимо высокое удельное электрическое сопротивление. Материалы группы 3 используют для изготовления пьезоэлементов, обладающих повышенной стабильностью резонансных частот в зависимости от температуры и времени. Материалы группы 4 используются для изготовления высокотемпературных пьезоэлементов.