Динамические ряды
Рефераты >> Статистика >> Динамические ряды

3. Параметры процесса авторегрессии конечного порядка не должны удовлетворять каким-нибудь условиям для того, чтобы процесс был стационарным. Однако для того чтобы процесс МА был обратимым, корни его характеристического уравнения должны лежать вне единичного круга.

4. Спектр процесса скользящего среднего является обратным к спектру соответствующего процесса авторегрессии [18].

2.3.3. Авторегрессионные модели со скользящими средними в остатках (ARMA(p, q)-модели)

Представление процесса типа МА в виде процесса авторегрессии неэкономично с точки зрения его параметризации. Аналогично процесс AR не может быть экономично представлен с помощью модели скользящего среднего. Поэтому для получения экономичной параметризации иногда бывает целесообразно включить в модель как члены, описывающие авторегрессию, так и члены, моделирующие остаток в виде скользящего среднего. Такие линейные процессы имеют вид

et = a1et-1 +…+ apet-p + dt - q1dt-1 -…- qqdt-q (2.30)

и называются процессами авторегрессии - скользящего среднего порядка (p, q)(ARMA(p, q)).

Стационарность и обратимость ARMA(p, q)-процессов. Записывая процесс (2.30) в виде

(2.31)

где , можно провести анализ стационарности (2.31) по той же схеме, что и для AR(p)-процессов. При этом различие “остатков” и dе никак не повлияет на выводы, определяющие условия стационарности процесса авторегрессии. Поэтому процесс (2.30) является стационарным тогда и только тогда, когда все корни характеристического уравнения AR(p)-процесса лежат вне единичного круга.

Аналогично, обозначив и рассматривая процесс (2.30) в виде

,

получаем те же выводы относительно условий обратимости этого процесса, что и для процесса МА(q): для обратимости ARMA(p, q)-процесса необходимо и достаточно, чтобы все корни характеристического уравнения МА(q)-процесса лежали бы вне единичного круга.

Автокорреляционная функция анализируется аналогично, тому как это делалось для AR- и МА-процессов, что позволяет сделать следующие выводы.

1) Из соотношений g(t) = a1g(t - 1) +…+ apg(t - p) + ged(t) - q1ged(t - 1) -…- qqged(t - - q), (где ged(k) = E(et-kdt) - «перекрестная» ковариационная функция последовательностей et и dt) для t = 0, 1,…, q следует, что ковариации g(0), g(1),…, g(q) и, соответственно, автокорреляции r(1),…, r(q) связаны определенной системой зависимостей с q параметрами скользящего среднего q1,…, qq и p параметрами авторегрессии a1,…, ap. При этом перекрестные ковариации ged(t), ged(t - 1),…, ged(t - q) при положительных значениях сдвига по времени равны нулю, а при отрицательных - тоже могут быть выражены в терминах параметров a1,…, ap,q1,…, qq с помощью следующего приема: пусть k > 0; тогда ged(-k) = E(et-kdt); в произведении et-kdt с помощью (k + 1)-кратной последовательной подстановки первого сомножителя по формуле (2.30) он заменяется линейной комбинацией et-1, элементов белого шума d и параметров модели, что после применения к получившемуся произведению операции усреднения E дает выражение, зависящее только от параметров модели (поскольку E(et-1dt) = 0).

2) Значения автокорреляционной функции r(t) для t ³ q + 1 вычисляются по рекуррентному соотношению r(t) = a1r(t - 1) + a2r(t - 2) +…+ apr(t - p) при t ³ q + 1, которое в точности повторяет аналогичное рекуррентное соотношение (2.24) для автокорреляционной функции процесса AR(p). Это значит, что, начиная с t = q + 1, автокорреляционная функция процесса ARMA(p, q) ведет себя так же, как и автокорреляционная функция процесса AR(p), т.е. она будет состоять из совокупности затухающих экспонент и (или) затухающих синусоид, и ее свойства определяются коэффициентами a1,…, ap и начальными значениями r(1),…, r(p).

Частная автокорреляционная функция процесса ARMA(p, q) при больших t ведет себя как частная автокорреляционная функция МА(q)-процесса. Это значит, что в ней преобладают члены типа затухающих экспонент и (или) затухающих синусоид (соотношение между теми и другими зависит от порядка скользящего среднего q и значений параметров процесса).

Спектральная плотность процесса ARMA(p, q) может быть вычислена с помощью соотношения:

Идентификация процесса ARMA(p, q) базируется (так же как и AR-и МА-моделях) на статистическом оценивании параметров модели с помощью метода моментов. Процедура оценивания параметров ak (k = 1, 2,…, p), qj (j = 1, 2,…, q)и разбивается на два этапа. На 1-м этапе получаются оценки параметров ak, на 2-м - оценки параметров qj и .

1-й этап. Параметры автокорреляционной составляющей модели (2.30) удовлетворяют системе линейных уравнений:

(2.32)

Подставляя в (2.32) вместо r(k) их выборочные значения и решая получившуюся систему относительно aj (j = 1,…, p), получаем оценки .

2-й этап. Подставляя полученные оценки в (2.30) получаем набор из q + 1 соотношений:

Эта система позволяет получить нелинейные зависимости, связывающие искомые параметры , q1,…, qq с автоковариациями и построенными на 1-м этапе оценками.

Заключение

Эконометрика - метод экономического анализа, который объединяет экономическую теорию со статистическими и математическими методами анализа. Это попытка улучшить экономические прогнозы и сделать возможным успешное планирование экономической политики. В эконометрике экономические теории выражаются в виде математических соотношений, а затем проверяются эмпирически статистическими методами. Данная система используется, чтобы создать модели с целью прогнозирования таких важных показателей, как валовой национальный продукт, уровень безработицы, темп инфляции и дефицит федерального бюджета. Эконометрика используется все более широко, несмотря на то, что полученные с помощью нее прогнозы не всегда оказывались достаточно точными.

Проблемы в эконометрики многочисленны и разнообразны. Экономика - это сложный, динамический, многомерный и эволюционирующий объект, поэтому изучать ее трудно. Как общество, так и общественная система изменяются со временем, законы меняются, происходят технологические инновации, поэтому найти в этой системе инварианты непросто. Временные ряды коротки, сильно агрегированы, разнородны, нестационарны, зависят от времени и друг от друга, поэтому мы имеем мало эмпирической информации для изучения. Экономические величины измеряются неточно, подвержены значительным позднейшим исправлениям, а важные переменные часто не измеряются или ненаблюдаемы, поэтому все выводы неточны и ненадежны. Экономические теории со временем меняются, соперничающие объяснения сосуществуют друг с другом, и поэтому надежная теоретическая основа для моделей отсутствует. И среди самих эконометристов, по-видимому, нет согласия по поводу того, как следует заниматься их предметом.


Страница: