Основы статистики
Рефераты >> Статистика >> Основы статистики

Для моментного ряда с равноотстоящими уровнями:

Для моментного ряда с неравноотстоящими интервалами:

Например, даны следующие данные:

01.01.98 – 455 01.07 – 465 01.11 – 495 01.01.99 – 505

01.05 – 465 01.10 – 485 01.12 – 505

2. Средний абсолютный прирост

Показывает скорость развития явления в изучаемом динамическом ряду. Он получается из абсолютных приростов как их средняя арифметическая. Может быть получен также как отношение абсолютного прироста за весь период к числу уровней без одного.

3. Средний темп роста

Изменение (рост) социально-экономических явлений происходит по правилу сложных процентов. Средняя геометрическая из годовых темпов роста равна:

4. Средний темп прироста

Выявление основной тенденции развития динамических рядов

Существует два подхода: механическое и аналитическое выравнивание.

Механическое выравнивание:

– Выявление основной тенденции может быть осуществлено графически.

– Способ укрупнения интервалов.

– Метод скользящей средней.

Рассмотрим подробнее последний метод. Итак, смысл аналитического выравнивания методом скользящей средней состоит в том, что он позволяет сглаживать случайные колебания в уровнях развития явления во времени. Поэтому период охватываемой средней постоянно меняется.

Период осреднения как правило выбирается равным временному периоду, в течение которого начинается и заканчивается цикл развития какого-либо явления.

Пример расчета пятилетней скользящей средней:

Год

у

Скользящая средняя

1990

10,9

91

9,7

92

13,1

11,40

93

11,1

11,98

94

12,2

12,78

95

13,8

12,82

96

13,7

13,26

97

13,3

13,24

98

12,8

99

12,6

У этого метода есть ряд недостатков:

– в зависимости от периода осреднения мы теряем 1, 2, 3 и более уровней ряда;

– подсчитанные нами показатели не относятся ни к какому конкретному периоду времени.

Из-за этого не представляется возможным осуществлять прогнозирование развития изучаемых явлений.

Скользящая средняя может быть рассчитана и как взвешенная.

Методы аналитического выравнивания

Это наиболее эффективные методы выравнивания. Имеют конечный вид функции времени (уравнения времени). Возможно выравнивание по прямой, по гиперболе, по параболе 2-го или 3-го порядка.

Задача состоит в том, чтобы подобрать для конкретного ряда динамики такую логарифмическую кривую, которая бы наиболее точно отображала черты фактической динамики. Решение этой задачи часто связано с методом наименьших квадратов, т.к. наилучшим считается такое приближение выровненных данных к эмпирическим, при которых сумма квадратов их отклонений является минимальной:

Техника аналитического выравнивания по прямой имеет наиболее простое выражение.

Система уравнений упрощается, если значение подобрать таким образом, чтобы т.е. перенести начало отсчета в середину рассматриваемого периода.

Годы

Cтудентов

t

t2

yt

yt

1986

98,4

-4

16

-393,6

94,8

87

97,9

-3

9

-293,7

96,0

88

97,2

-2

4

-194,7

97,2

89

95,7

-1

1

-95,7

98,4

90

95,0

0

0

0

99,6

91

99,2

1

1

99,2

100,6

92

102,4

2

4

204,8

102,0

93

104,0

3

9

312,0

103,2

94

106,2

4

16

424,8

104,4

896,0

0

60

73,4

896,4


Страница: