Критерии принятия решенийРефераты >> Статистика >> Критерии принятия решений
Соответствующее критерию Сэвиджа правило выбора следующее: каждый элемент матрицы решений [Wij] вычитается из наибольшего результата max Wij соответствующего столбца. Разности образуют матрицу остатков. Эта матрица пополняется столбцом наибольших разностей Wir. Выбирается тот вариант, в строке которого стоит наименьшее значение.
Согласно критерию Гурвица выбирается такая стратегия, которая занимает некоторое промежуточное положение между крайним пессимизмом и оптимизмом:
где
r - коэффициент пессимизма, выбираемый в интервале [0,1].
Правило выбора согласно этому критерию следующее: матрица решений [Wij] дополняется столбцом, содержащим средние взвешенные наименьшего и наибольшего результатов для каждой строки (2.6). Выбирается тот вариант, в строках которого стоят наибольшие элементы Wir этого столбца.
При r =1 критерий Гурвица превращается в критерий Вальда (пессимиста), а при r =0 - в критерий азартного игрока. Отсюда ясно, какое значение имеет весовой множитель r . В технических приложениях правильно выбрать этот множитель бывает так же трудно, как правильно выбрать критерий. Поэтому чаще всего весовой множитель r =0.5 принимается в качестве средней точки зрения.
Критерий Гурвица предъявляет к ситуации, в которой принимается решение, следующие требования:
· о вероятности появления состояния Vj ничего не известно;
· с появлением состояния Vj необходимо считаться;
· реализуется лишь малое количество решений;
1.Критерии принятия решений
Критерий принятия решений - это функция, выражающая предпочтения лица, принимающего решения (ЛПР), и определяющая правило, по которому выбирается приемлемый или оптимальный вариант решения.
Всякое решений в условиях неполной информации принимается в с учетом количественных характеристик ситуаций, в которой принимаются решения. Наиболее часто принимаются следующие критерии принятия Севиджа, критерий Гурвица, критерий Ходжа-Лимона, критерий Гермейера, соответствии с решений: минимаксный критерий, критерий Байеса-Лапласа, критерий какой-либо оценочной информацией, выбор которой должен осуществляться критерий произведений, составной критерий Байеса-Лапласа минимаксный.
Эти критерии можно использовать поочередно, причем после вычисления их значений среди нескольких вариантов приходится произвольным образом выделять некоторое окончательное решение. Что позволяет, во-первых, лучше проникнуть во все внутренние связи проблемы принятия решений и, во-вторых, ослабить влияние субъективного фактора.
Классические критерии принятия решений.
1.1. Минимаксный критерий (ММ) использует оценочную функцию ZММ, соответствующую позицию крайней осторожности.
ZММ=max eir и eir=min eij.
гдеzmm — оценочная функция ММ-критерия.
Поскольку в области технических задач построение множества Е вариантовуже само по себе требует весьма значительных усилий, причем иногда возникает необходимость в их рассмотрении с различных точек зрения. Оно должно напоминать о том, что совокупность вариантов необходимо исследовать возможно более полным образом, чтобы была обеспечена оптимальность выбираемого варианта.
Правило выбора решения в соответствии с этим критерием можно интерпретировать следующим образом:
Матрица решений дополняется еще одним столбцом из наименьших результатов eir каждой строки. Выбрать надлежит те варианты Eio, в строках которых стоят наибольшие значения eir этого столбца.
Выбранные таким образом варианты полностью исключают риск. Это означает, что принимающий решение не может столкнуться с худшим результатом,чем тот, на который он ориентируется. Какие бы условия Fjни встретились, соответствующий результат не может оказаться ниже Zмм. Это свойство заставляет считать минимаксный критерий одним из фундаментальных. Поэтому в технических задачах он применяется чаще всего, как сознательно, так и неосознанно. Однако положение об отсутствии риска стоит различных потерь.
1.2. Критерий Сэвиджа.
С помощью обозначения
аij=max eij – eij – это eir=maxaij = max(max eij-eij),
формируется оценочная функция
Zs=min eir = min [max (maxeij – eij)]
Соответствующее правило выбора теперь интерпретируется так:
Каждый элемент матрицы решений вычитается из наибольшего результата соответствующего столбца. Эти разности образуют матрицу остатков. Эта матрица пополняется столбцом наибольших разностей eir. Выбираются те решения Еio, в строках которых стоит наименьшее значение для этого столбца
и строится множество оптимальных вариантов решения
Для понимания этого критерия определяемую соотношением величину aij = max eij - eij можно трактовать как максимальный дополнительный выигрыш, который достигается, если в состоянии Fj вместо варианта Ei выбрать другой, оптимальный для этого внешнего состояния вариант. Мы можем, однако, интерпретировать aij и как потери (штрафы), возникающие в состоянии Fi при замене оптимального для него варианта на вариант Ei. Тогда определяемая соотношением величина eir представляет собой — при интерпретации аij в качестве потерь—максимальные возможные (по всем внешним состояниям Fj, j==1, ., n) потери в случае выбора варианта Ei. Эти максимально возможные потери минимизируются за счет выбора подходящего варианта Ei.
Соответствующее S-критерию правило выбора теперь интерпретируется так:
каждый элемент матрицы решений ||eij|| вычитается из наибольшего результата max eij соответствующего столбца.
Разности aij образуют матрицу остатков ||aij|| Эта матрица пополняется столбцом наибольших разностей eir. Выбираются те варианты Eio, в строках которых стоит наименьшее для этого столбца значение.
По выражению оценивается значение результатов тех состояний, которые, вследствие выбора соответствующего распределения вероятностей, оказывают одинаковое влияние на решение, с точки зрения результатов матрицы ||eij|| S-критерий связан с риском, однако, с позиций матрицы ||aij|| он от риска свободен.
1.3. Критерий Байеса-Лапласа.
Этот критерий учитывает каждое из возможных следствий. Пусть qj – вероятность появления внешнего состояния Fj, тогда для этого критерия оценочная функция запишется так:
ZBL=max eir, eir= åeijqj.
Тогда правило выбора будет записано так:
Матрица решений дополняется еще одним столбцом, содержащим математическое ожидание значений каждой из строк. Выбираются те варианты Eio, в строках которых стоит наибольшее значение eir этого столбца.
1.4. Расширенный минимаксный критерий.
В нем используются простейшие понятия теории вероятностей, а также, в известном смысле, теории игр. В технических приложениях этот критерий до сегоднешнего времени применяется мало.
Основным здесь является предположение о том, что каждому из n возможных внешних состояний Fj приписана вероятность его появления : 0< q<1.