Дисперсионный однофакторный анализ
Рефераты >> Статистика >> Дисперсионный однофакторный анализ

4 Дисперсионный анализ для связанных выборок

4.1 Назначение метода

Метод дисперсионного анализа для связанных выборок применяет­ся в тех случаях, когда исследуется влияние разных градаций фактора или разных условий на одну и ту же выборку испытуемых.

Градаций фактора должно быть не менее трех.

Непараметрический вариант этого вида анализа — критерий Фридмана χ2r

4.2 Описание метода

В данном случае различия между испытуемыми — возможный са­мостоятельный источник различий. В схеме однофакторного анализа для несвязанных выборок различия между условиями в то же время отра­жали различия между испытуемыми. Теперь различия между условиями могут проявиться только вопреки различиям между испытуемыми.

Фактор индивидуальных различий может оказаться более значи­мым, чем фактор изменения экспериментальных условий. Поэтому нам необходимо учитывать еще одну величину — сумму квадратов сумм ин­дивидуальных значений испытуемых.

4.3 Графическое представление метода

На Рис. 3 представлена кривая изменения времени решения анаграмм разной длины: четырехбуквенной, пятибуквенной и шестибуквенной. Однофакторный дисперсионный анализ для связанных выборок позволит определить, что перевешивает — тенденция, выраженная этой кривой, или индивидуальные различия, диапазон которых представлен на графике в виде вертикальных линий — от минимального до макси­мального значения.

Рис. 3. Изменение времени работы над разными анаграммами у пяти испытуемых; вертикальными линиями отображены диапазоны изменчивости признака в разных усло­виях от минимального значения (снизу) до максимального значения (сверху)

4.4 Ограничения метода дисперсионного анализа для связанных выборок

1. Дисперсионный анализ для связанных выборок требует не менее трех градаций фактора и не менее двух испытуемых, подвергшихся воздействию каждой из градаций фактора.

2. Должно соблюдаться правило равенства дисперсий в каждой ячейке комплекса. Это условие косвенно выполняется за счет одинакового количества наблюдений в каждой ячейке комплекса. Предлагаемая схема расчета ориентирована только на такие равномерные комплексы.

3. Результативный признак должен быть нормально распределен в ис­следуемой выборке.

В приводимом ниже примере показатели асимметрии и эксцесса составляют:

A=2,18

mA=0,632

tA=2,18/0,632=3,45

E=4,17

mE=1,264

tE=4,17/1,264=3,30

Таким образом, распределение показателей 5-ти человек, состав­ляющих дисперсионный комплекс, несколько отличается от нормального: tA>3; tE>3. Однако в целом по выборке распределение нормальное: n=22; A=1,26; тА=0,522 tA=2,41<3; E=2,29; mE=l,044; tE=2,19<3.

По-видимому, необходимо удовлетвориться тем, что в выборке в целом результативный признак распределен нормально. Случайно ото­бранные 5 человек распределением своих оценок демонстрируют неко­торое отклонение. Однако, если бы мы выбирали испытуемых таким образом, чтобы распределение их оценок подчинялось нормальному закону, это нарушило бы правило рэндомизации — случайности отбора объектов без учета значений результативного признака при отборе (Плохинский Н. А., 1970).

Данные этого примера нам уже знакомы. Они использовались для иллюстрации непараметрического критерия Фридмана χ2r Исполь­зование здесь этого же примера позволит нам сопоставить результаты, получаемые с помощью непараметрических и параметрических методов.

Пример

Группа из 5 испытуемых была обследована с помощью трех экс­периментальных заданий, направленных на изучение интеллектуальной, настойчивости (Сидоренко Е. В., 1984). Каждому испытуемому инди­видуально предъявлялись последовательно три одинаковые анаграммы: четырехбуквенная, пятибуквенная и шестибуквенная. Можно ли счи­тать, что фактор длины анаграммы влияет на длительность попыток ее решения?

Сформулируем гипотезы. Наборов гипотез в данном случае два.

Набор А.

H0(A): Различия в длительности попыток решения анаграмм разной длины являются не более выраженными, чем различия, обуслов­ленные случайными причинами.

H1(A): Различия в длительности попыток решения анаграмм разной длины являются более выраженными, чем различия, обусловлен­ные случайными причинами.

Набор Б.

H0(Б): Индивидуальные различия между испытуемыми являются не более выраженными, чем различия, обусловленные случайными причинами.

H1(Б): Индивидуальные различия между испытуемыми являются более выраженными, чем различия, обусловленные случайными причи­нами.

Таблица 5 Длительность попыток решения анаграмм (сек).

Код имени

Условие 1:

Условие 2;

Условие 3:

Суммы

испытуемого

четырехбуквенная

пятибуквенная

шестибуквенная

по испытуемым

анаграмма

анаграмма

анаграмма

 

1. Л-в

5

235

7

247

2. П-о

7

604

20

631

3. К-в

2

93

5

100

4. Ю-ч

2

171

8

181

5. Р-о

35

141

7

183

Суммы по столбцам

51

1244

47

1342

Установим все промежуточные величины, необходимые для расче­та критерия F.

Таблица 6 Расчет промежуточных величин для критерия F в примере об анаграммах


Страница: