Дисперсионный однофакторный анализРефераты >> Статистика >> Дисперсионный однофакторный анализ
а) для дисперсионных комплексов, представляющих данные одной и той же выборки испытуемых, подвергнутой влиянию разных условий (разных градаций фактора);
б) для дисперсионных комплексов, в которых влиянию разных условий (градаций фактора) были подвергнуты разные выборки испытуемых.
Первый вариант называется однофакторным дисперсионным анализом для связанных выборок, второй — для несвязанных выборок.
Все предложенные алгоритмы расчетов предназначены для равномерных комплексов, где в каждой ячейке представлено одинаковое число наблюдений.
3 Однофакторный дисперсионный анализ для несвязанных выборок
3.1 Назначение метода
Метод однофакторного дисперсионного анализа применяется в тех случаях, когда исследуются изменения результативного признака под влиянием изменяющихся условий или градаций какого-либо фактора. В данном варианте метода влиянию каждой из градаций фактора подвергаются разные выборки испытуемых. Градаций фактора должно быть не менее трех[2].
Непараметрическим вариантом этого вида анализа является критерий Н Крускала-Уоллиса.
3.2 Описание метода
Работу начинаем с того, что представляем полученные данные в виде столбцов индивидуальных значений. Каждый из столбцов соответствует тому или иному из изучаемых условий (см. Табл. 1).
После этого нам нужно просуммировать индивидуальные значения по столбцам и суммы возвести в квадрат.
Суть метода состоит в том, чтобы сопоставить сумму этих возведенных в квадрат сумм с суммой квадратов всех значений, полученных во всем эксперименте.
3.3 Гипотезы
H0: Различия между градациями фактора (разными условиями) являются не более выраженными, чем случайные различия внутри каждой группы.
Н1: Различия между градациями фактора (разными условиями) являются более выраженными, чем случайные различия внутри каждой группы.
3.4 Графическое представление метода для несвязанных выборок
На Рис. 2 показана кривая изменения объема воспроизведения слов при разной скорости их предъявления (см. Пример). Метод дисперсионного анализа позволяет определить, что перевешивает — тенденция, выраженная этой кривой, или вариативность признака внутри групп, которая на графике схематически изображена в виде диапазонов изменения признака от минимального значения к максимальному значению в каждой группе.
3.4 Ограничения метода однофакторного дисперсионного анализа для несвязанных выборок
1. Однофакторный дисперсионный анализ требует не менее трех градаций фактора и не менее двух испытуемых в каждой градации.
2. Должно соблюдаться правило равенства дисперсий в каждой ячейке дисперсионного комплекса. Условие равенства дисперсий выполняется при использовании предлагаемой схемы расчета за счет выравнивания количества наблюдений в каждом из условий (градаций). Правомерность этого методического приема была обоснована Г.Шеффе (1980).
3. Результативный признак должен быть нормально распределен в исследуемой выборке.
Правда, обычно не указывается, идет ли речь о распределении признака во всей обследованной выборке или в той ее части, которая составляет дисперсионный комплекс.
Характерно, что зарубежные руководства, в общем ссылаясь на необходимость нормального распределения данных для дисперсионного анализа, при рассмотрении конкретных схем и примеров к этому вопросу уже не возвращаются и никаких данных о распределении признака ввыборке в целом или в той ее части, которая составляет дисперсионный комплекс, не приводят (см. McCall R., 1970; Welkowitz J., Ewen R.B., Cohen J., 1982; Greene J., D'Olivera M, 1989).
Рассмотрим схему дисперсионного однофакторного анализа для несвязанных выборок, предлагаемую в руководстве J.Greene, M.D'Olivera (1989)с использованием примера этих авторов.
Пример
Три различные группы из шести испытуемых получили списки из десяти слов. Первой группе слова предъявлялись с низкой скоростью — 1 слово в 5 секунд, второй группе со средней скоростью — 1 слово в 2 секунды, и третьей группе с большой скоростью — 1 слово в секунду. Было предсказано, что показатели воспроизведения будут зависеть от скорости предъявления слов. Результаты представлены в Табл. 2.
Таблица 2. Количество воспроизведенных слов (по: J.Greene, M.D'Olivera, 1989, p.99)
Поскольку сопоставляются разные группы, любые различия в показателях между разными условиями предъявления слов — это в то же время различия между группами испытуемых. Однако всякие различия между испытуемыми внутри каждой группы объясняются какими-то другими, не относящимися к делу переменными, будь то индивидуальные различия между отдельными испытуемыми или неконтролируемые факторы, заставляющие их реагировать различным образом Критерий F позволяет проверить гипотезы:
H0: Различия в объеме воспроизведения слов между группами являются не более выраженными, чем случайные различия внутри каждой группы.
Н1: Различия в объеме воспроизведения слов между группами являются более выраженными, чем случайные различия внутри каждой группы. Используя экспериментальные значения, представленные в Табл. 7.2, установим некоторые величины, которые будут необходимы для расчета критерия F.
Таблица 3. Расчет основных величин для однофакторного дисперсионного анализа
Отметим разницу между , в которой все индивидуальные значения сначала возводятся в квадрат, а потом суммируются, и , где индивидуальные значения сначала суммируются для получения общей суммы, а потом уже эта сумма возводится в квадрат.
Последовательность расчетов представлена в Табл. 4.
Часто встречающееся в этой и последующих таблицах обозначение SS - сокращение от «суммы квадратов» (sum of squares). Это сокращение чаще всего используется в переводных источниках (см., например: Гласе Дж., Стенли Дж., 1976).
SSфакт означает вариативность признака, обусловленную действием исследуемого фактора; SSобщ — общую вариативность признака; SSсл —вариативность, обусловленную неучтенными факторами, «случайную» или «остаточную» вариативность.
MS — «средний квадрат», или математическое ожидание суммы квадратов, усредненная величина соответствующих SS.
df — число степеней свободы, которое при рассмотрении непараметрических критериев мы обозначили греческой буквой V.
Таблица 4 Последовательность операций в однофакторном дисперсионном анализе для несвязанных выборок
Вывод: H0 отклоняется. Принимается H1. Различия в объеме воспроизведения слов между группами являются более выраженными, чем случайные различия внутри каждой группы (<0,01). Итак, скорость предъявления слов влияет на объем их воспроизведения[3]. Вернемся к графику на Рис.2. Мы видим, что, скорее всего, значимость различий объясняется тем, что показатель воспроизведения при самой высокой скорости предъявления слов (условие 3) гораздо ниже соответствующих показателей при средней и низкой скорости.