Дисперсионный однофакторный анализ
Рефераты >> Статистика >> Дисперсионный однофакторный анализ

Равномерные комплексы позволяют также избежать значитель­ных трудностей, которые неизбежно возникают при обсчете неравно­мерных, или неортогональных, комплексов. В настоящем руководстве приведены алгоритмы расчета лишь для равномерных комплексов. С методами обсчета неравномерных комплексов можно ознакомиться у Н. А. Плохинского (1970), Г. В. Суходольского (1972), Г. Шеффе (1980).

В случае, если в разных градациях комплекса оказалось неравное количество наблюдений, необходимо отсеять некоторые из них. Если в комплексе со связанными выборками кто-либо из испытуемых не был подвергнут одному из условий действия переменной (градаций факто­ра), то его данные исключаются. Если же комплекс включает незави­симые выборки, каждая из которых была подвергнута определенному условию воздействия (градации фактора), то «лишние» испытуемые в какой-либо из ячеек комплекса отсеиваются путем случайного выбора необходимого количества карточек.

2.3 Проверка нормальности распределения результативного признака.

Дисперсионный анализ относится к группе параметрических мето­дов и поэтому его следует применять только тогда, когда известно или доказано, что распределение признака является нормальным (Суходольский Г. В., 1972; Шеффе Г., 1980 и др.). Строго говоря, перед тем, как применять дисперсионный анализ, мы должны убедиться в нормальности распределения результативного признака. Нормальность распределения результативного признака можно проверить путем расче­та показателей асимметрии и эксцесса и сопоставления их с критическими значениями (Пустыльник Е. И., 1968* Плохинский Н. А., 1970 и др.).

Произведем необходимые расчеты на примере параграфа 8.3, в котором анализируется длительность мышечного волевого усилия.

Действовать будем по следующему алгоритму:

а) определим показатели асимметрии и эксцесса по формулам Н.А. Плохинского и сопоставим их с критическими значениями, указан­ными Н.А. Плохинским;

б) рассчитаем критические значения показателей асимметрии и эксцесса по формулам Е.И. Пустыльника и сопоставим с ними эмпирические значения;

в) если эмпирические значения показателей окажутся ниже критиче­ских, сделаем вывод о том, что распределение признака не отличает­ся от нормального.

Таблица 1 Вычисление показателей асимметрии и эксцесса по показателю длитель­ности попыток решения анаграмм

Для расчетов в Табл. 1 необходимо сначала определить сред­нюю арифметическую по формуле:

где xi - каждое наблюдаемое значение признака;

п - количество наблюдений.

В данном случае:

Стандартное отклонение (сигма) вычисляется по формуле:

σ =

где

— каждое наблюдаемое значение признака;

— среднее значение (среднее арифметическое);

— количество наблюдений.

В данном случае:

σ =

Показатели асимметрии и эксцесса с их ошибками репрезента­тивности определяются по следующим формулам:

A =

где

— центральные отклонения;

σ - стандартное отклонение;

п - количество испытуемых.

В данном случае:

A =

Показатели асимметрии и эксцесса свидетельствуют о достовер­ном отличии эмпирических распределений от нормального в том случае, если они превышают по абсолютной величине свою ошибку репрезента­тивности в 3 и более раз:

В данном случае:

Мы видим, что оба показателя не превышают в три раза свою ошибку репрезентативности, из чего мы можем заключить, что распре­деление данного признака не отличается от нормального.

Теперь произведем проверку по формулам Е. И. Пустыльника. Рассчитаем критические значения для показателей А и Е:

Где n — количество наблюдений.

В данном случае:

3,89

Aэмп = 0,106

Aэмп < Aкр

Eэмп = –0.711

Eэмп <Eкр

Итак, оба варианта проверки, по Н. А. Плохинскому и по Е. И. Пустыльнику, дают один и тот же результат: распределение результа­тивного признака в данном примере не отличается от нормального рас­пределения.

Можно выбрать любой из двух предложенных вариантов провер­ки и придерживаться его. При больших объемах выборки, по-видимому, стоит производить расчет первичных статистик (оценок па­раметров) на ЭВМ.

2.4 Преобразование эмпирических данных с целью упрощения расчетов

Н. А. Плохинский указывает на возможность следующих преобразований:

1) все наблюдаемые значения можно разделить на одно и то же число k, например перевести показатели из миллиметров в сантиметры и т.п.;

2) все наблюдаемые значения можно умножить на одно и то же число k, например для того, чтобы избавиться от дробных значений;

3) от всех наблюдаемых значений можно отнять одно и то же число А, например наименьшее значение;

4) можно сделать двойное преобразование: из каждого значения вычесть число А, а полученный результат разделить на другое число k.

При всех этих преобразованиях результативного признака пока­затели соотношения дисперсий получаются точными и не требуют ника­ких поправок.

Средние величины изменяются, но их можно восстановить, ум­ножая среднюю величину на число k или деля ее на k(варианты 1 и 2), или прибавляя к средней число А (вариант 3) и т. п. Стандартное от­клонение изменяется только при введении множителя или делителя; полученный результат затем придется либо разделить на число k, либо умножить на него (Плохинский Н. А.,1964, с.34-36; Плохинский Н. А., 1970, с.71-72).

В последующих трех параграфах будет рассмотрен метод однофакторного анализа в двух вариантах:


Страница: