Динамические ряды
Рефераты >> Статистика >> Динамические ряды

подсчитываются значения ; 2) в соотношения (2.29) последовательно подставляются значения t = 1,…, q с заменой в левой их части величин r(t) полученными ранее оценками ; 3) полученная таким образом система из q уравнений разрешается относительно неизвестных значений q1,…, qq; решения этой системы и дадут оценки неизвестных параметров модели; 4) оценка параметра может быть получена с помощью первого из соотношений (2.28) подстановкой в него вместо g(0), q1,…, qq их оценок.

Заметим, что в отличие от системы уравнений Юла-Уокера (2.25), уравнения для определения оценок параметров МА(q)-модели нелинейны. Поэтому эти уравнения приходится решать с помощью итерационных процедур [4].

Взаимосвязь процессов AR(q) и МА(q). Сделаем ряд замечаний о взаимосвязях между процессами авторегрессии и скользящего среднего.

1. Для конечного процесса авторегрессии порядка p dt может быть представлено как конечная взвешенная сумма предшествующих e, или et может быть представлено как бесконечная сумма предшествующих d. В то же время, в конечном процессе скользящего среднего порядка q et может быть представлено как конечная взвешенная сумма предшествующих d или dt - как бесконечная взвешенная сумма предшествующих e.

2. Конечный процесс МА имеет автокорреляционную функцию, обращающуюся в нуль после некоторой точки, но так как он эквивалентен бесконечному процессу AR, его частная автокорреляционная функция бесконечно протяженная. Главную роль в ней играют затухающие экспоненты и (или) затухающие синусоиды. И наоборот, процесс AR имеет частную автокорреляционную функцию, обращающуюся в нуль после некоторой точки, но его автокорреляционная функция имеет бесконечную протяженность и состоит из совокупности затухающих экспонент и или затухающих синусоид.

3. Параметры процесса авторегрессии конечного порядка не должны удовлетворять каким-нибудь условиям для того, чтобы процесс был стационарным. Однако для того чтобы процесс МА был обратимым, корни его характеристического уравнения должны лежать вне единичного круга.

4. Спектр процесса скользящего среднего является обратным к спектру соответствующего процесса авторегрессии [18].

2.3.3. Авторегрессионные модели со скользящими средними в остатках (ARMA(p, q)-модели)

Представление процесса типа МА в виде процесса авторегрессии неэкономично с точки зрения его параметризации. Аналогично процесс AR не может быть экономично представлен с помощью модели скользящего среднего. Поэтому для получения экономичной параметризации иногда бывает целесообразно включить в модель как члены, описывающие авторегрессию, так и члены, моделирующие остаток в виде скользящего среднего. Такие линейные процессы имеют вид

et = a1et-1 +…+ apet-p + dt - q1dt-1 -…- qqdt-q (2.30)

и называются процессами авторегрессии - скользящего среднего порядка (p, q)(ARMA(p, q)).

Стационарность и обратимость ARMA(p, q)-процессов. Записывая процесс (2.30) в виде

(2.31)

где , можно провести анализ стационарности (2.31) по той же схеме, что и для AR(p)-процессов. При этом различие “остатков” и dе никак не повлияет на выводы, определяющие условия стационарности процесса авторегрессии. Поэтому процесс (2.30) является стационарным тогда и только тогда, когда все корни характеристического уравнения AR(p)-процесса лежат вне единичного круга.

Аналогично, обозначив и рассматривая процесс (2.30) в виде

,

получаем те же выводы относительно условий обратимости этого процесса, что и для процесса МА(q): для обратимости ARMA(p, q)-процесса необходимо и достаточно, чтобы все корни характеристического уравнения МА(q)-процесса лежали бы вне единичного круга.

Автокорреляционная функция анализируется аналогично, тому как это делалось для AR- и МА-процессов, что позволяет сделать следующие выводы.

1) Из соотношений g(t) = a1g(t - 1) +…+ apg(t - p) + ged(t) - q1ged(t - 1) -…- qqged(t - - q), (где ged(k) = E(et-kdt) - «перекрестная» ковариационная функция последовательностей et и dt) для t = 0, 1,…, q следует, что ковариации g(0), g(1),…, g(q) и, соответственно, автокорреляции r(1),…, r(q) связаны определенной системой зависимостей с q параметрами скользящего среднего q1,…, qq и p параметрами авторегрессии a1,…, ap. При этом перекрестные ковариации ged(t), ged(t - 1),…, ged(t - q) при положительных значениях сдвига по времени равны нулю, а при отрицательных - тоже могут быть выражены в терминах параметров a1,…, ap,q1,…, qq с помощью следующего приема: пусть k > 0; тогда ged(-k) = E(et-kdt); в произведении et-kdt с помощью (k + 1)-кратной последовательной подстановки первого сомножителя по формуле (2.30) он заменяется линейной комбинацией et-1, элементов белого шума d и параметров модели, что после применения к получившемуся произведению операции усреднения E дает выражение, зависящее только от параметров модели (поскольку E(et-1dt) = 0).

2) Значения автокорреляционной функции r(t) для t ³ q + 1 вычисляются по рекуррентному соотношению r(t) = a1r(t - 1) + a2r(t - 2) +…+ apr(t - p) при t ³ q + 1, которое в точности повторяет аналогичное рекуррентное соотношение (2.24) для автокорреляционной функции процесса AR(p). Это значит, что, начиная с t = q + 1, автокорреляционная функция процесса ARMA(p, q) ведет себя так же, как и автокорреляционная функция процесса AR(p), т.е. она будет состоять из совокупности затухающих экспонент и (или) затухающих синусоид, и ее свойства определяются коэффициентами a1,…, ap и начальными значениями r(1),…, r(p).

Частная автокорреляционная функция процесса ARMA(p, q) при больших t ведет себя как частная автокорреляционная функция МА(q)-процесса. Это значит, что в ней преобладают члены типа затухающих экспонент и (или) затухающих синусоид (соотношение между теми и другими зависит от порядка скользящего среднего q и значений параметров процесса).

Спектральная плотность процесса ARMA(p, q) может быть вычислена с помощью соотношения:

Идентификация процесса ARMA(p, q) базируется (так же как и AR-и МА-моделях) на статистическом оценивании параметров модели с помощью метода моментов. Процедура оценивания параметров ak (k = 1, 2,…, p), qj (j = 1, 2,…, q)и разбивается на два этапа. На 1-м этапе получаются оценки параметров ak, на 2-м - оценки параметров qj и .


Страница: