Динамические рядыРефераты >> Статистика >> Динамические ряды
· Случайные (нерегулярные), не поддающиеся учету и регистрации. Их воздействие на формирование значений временного ряда как раз и обусловливает стохастическую природу элементов xt, а, следовательно, и необходимость интерпретации x1,…, xT как наблюдений, произведенных над случайными величинами x1,…, xТ. [17] Будем обозначать результат воздействия случайных факторов с помощью случайных величин («остатков», «ошибок ») et.
Конечно, вовсе не обязательно, чтобы в процессе формирования значений всякого временного ряда участвовали одновременно факторы всех четырех типов. Выводы о том, участвуют или нет факторы данного типа в формировании значений конкретного ряда, могут базироваться как на анализе содержательной сущности задачи, так и на специальном статистическом анализе исследуемого временного ряда. Однако во всех случаях предполагается непременное участие случайных факторов. Таким образом, в общем виде модель формирования данных (при аддитивной структурной схеме влияния факторов) выглядит как:
xt = c1f(t) + c2j(t) +c3y(t) + et. (1)
где ci = 1, если факторы i-го типа участвуют в формировании значений ряда и ci = 0 – в противном случае.
Основные задачи анализа временных рядов. [2] Базисная цель статистического анализа временного ряда заключается в том, чтобы по имеющейся траектории этого ряда:
1. определить, какие из неслучайных функций присутствуют в разложении (1), т.е. определить значения индикаторов ci;
2. построить «хорошие» оценки для тех неслучайных функций, которые присутствуют в разложении (1);
3. подобрать модель, адекватно описывающую поведение случайных остатков et, и статистически оценить параметры этой модели.
Успешное решение перечисленных задач, обусловленных базовой целью статистического анализа временного ряда, является основой для достижения конечных прикладных целей исследования и, в первую очередь, для решения задачи кратко- и среднесрочного прогноза значений временного ряда. Приведем кратко основные элементы эконометрического анализа временных рядов.
· Большинство математико-статистических методов имеет дело с моделями, в которых наблюдения предполагаются независимыми и одинаково распределенными. При этом зависимость между наблюдениями чаще всего рассматривается как помеха в эффективном применении этих методов. Однако разнообразные данные в экономике, социологии, финансах, коммерции и других сферах человеческой деятельности поступают в форме временных рядов, в которых наблюдения взаимно зависимы, и характер этой зависимости как раз и представляет главный интерес для исследователя. Совокупность методов и моделей исследования таких рядов зависимых наблюдений называется анализом временных рядов. Главная цель эконометрического анализа временных рядов состоит в построении по возможности простых и экономично параметризованных моделей, адекватно описывающих имеющиеся ряды наблюдений и составляющих базу для решения, в первую очередь, следующих задач:
(a) вскрытие механизма генезиса наблюдений, составляющих анализируемый
(b) временной ряд;
(c) построение оптимального прогноза для будущих значений временного ряда;
выработка стратегии управления и оптимизации анализируемых процессов.
· Говоря о генезисе образующих временной ряд наблюдений, следует иметь в виду (и по возможности модельно описать) четыре типа факторов, под воздействием которых могут формироваться эти наблюдения: долговременные, сезонные, циклические (или конъюнктурные) и случайные. При этом не обязательно в процессе формирования значений конкретного временного ряда должны одновременно участвовать факторы всех четырех типов. Успешное решение задач выявления и моделирования действия этих факторов является основой, базисным отправным пунктом для достижения конечных прикладных целей исследования, главные из которых упомянуты в предыдущем пункте.
· Приступая к анализу дискретного ряда наблюдений, расположенных в хронологическом порядке, следует в первую очередь убедиться, действительно ли в формировании значений этого ряда участвовали какие-либо факторы, помимо чисто случайных. При этом под «чисто случайными» понимаются лишь те случайные факторы, под воздействием которых генерируются последовательности взаимно не коррелированных и одинаково распределенных случайных величин, обладающих постоянными (не зависящими от времени) средними значениями и дисперсиями.
Если в результате проверки такой статистической гипотезы выяснилось, что имеющиеся наблюдения взаимно зависимы (и, возможно, неодинаково распределены), то приступают к подбору подходящей модели для этого ряда. Множество моделей, в рамках которого ведется этот подбор, ограничивается обычно следующими классами моделей: (а) классом стационарных временных рядов (которые используются, в основном, для описания поведения «случайных остатков»), (б) классом нестационарных временных рядов, которые являются суммой детерминированного тренда и стационарного временного ряда, (в) классом нестационарных временных рядов, имеющих стохастический тренд, который можно удалить последовательным дифференцированием ряда (т.е. путем перехода от ряда уровней к ряду разностей первого или более высокого порядка) [15].
В рамках эконометрического анализа временных рядов макроэкономических показателей российской экономики, проводимого в настоящей работе, мы объединяем ряды, входящие в классы (а) и (б), в один класс, который, следуя общепринятой в последнее время практике[1], называем классом TS-рядов (trend stationary series – ряды, стационарные относительно детерминированного тренда). Адекватным методом остационаривания временных рядов, принадлежащих классу (б), является вычитание из ряда детерминированного тренда. Напротив, для рядов, принадлежащих классу (в), адекватным методом остационаривания ряда является переход от ряда уровней к ряду разностей (первого или более высокого порядка).
· Стационарные (в широком смысле) временные ряды xt характеризуются тем, что их средние значения Ext, дисперсии Dxt и ковариации g(t) = E[xt - Ext)(xt+t -Ext+t)] не зависят от t, для которого они вычисляются. Взаимозависимости, существующие между членами стационарного временного ряда, как правило, могут быть адекватно описаны в рамках моделей авторегрессии порядка p (AR(p)-моделей), моделей скользящего среднего порядка q (MA(q)-моделей) или моделей авторегрессии со скользящими средними в остатках порядка p и q (ARMA(p, q)-моделей) [6].
· Временной ряд xt называется интегрированным (проинтегрированным) порядка k, если последовательные разности Dkxt этого ряда порядка k (но не меньшего порядка!) образуют стационарный временной ряд. Поведение таких рядов, в том числе рядов, содержащих сезонную компоненту, в эконометрических прикладных задачах достаточно успешно описывают с помощью моделей авторегрессии - проинтегрированного скользящего среднего порядка p, k и q (ARIMA(p, k, q)-моделей) и некоторых их модификаций. К этому классу относится и простейшая модель стохастического тренда – процесс случайного блуждания (ARIMA(0, 1, 0)). Приращения случайного блуждания образуют последовательность независимых, одинаково распределенных случайных величин (“белый шум”). Поэтому процесс случайного блуждания называют также “проинтегрированным белым шумом”.