Динамические рядыРефераты >> Статистика >> Динамические ряды
Частная автокорреляционная функция rчаст(t). С помощью этой функции реализуется идея измерения автокорреляции, существующей между разделенными t тактами времени членами временного ряда xt и xt+t, при устраненном опосредованном влиянии на эту взаимозависимость всех промежуточных членов этого временного ряда. Частная автокорреляция 1-го порядка может быть подсчитана с использованием соотношения:
(2.4)
где m - среднее значение анализируемого стационарного процесса.
Частные автокорреляции более высоких порядков могут быть подсчитаны аналогичным образом по элементам общей корреляционной матрицы R = ||rij||, в которой rij = = r(xi, xj) = r(|i - j|), где i, j = 1,…, T и r(0) = 1. Так, например, частная автокорреляция 2-го порядка определяется по формуле:
(2.5)
Эмпирические (выборочные) версии автокорреляционных функций получаются с помощью тех же соотношений (2.4), (2.5) при замене участвующих в них теоретических значений автокорреляций r(t) их статистическими оценками .
Полученные таким образом частные автокорреляции rчаст(1),rчаст (2),… можно нанести на график, в котором роль абсциссы выполняет величина сдвига t. Знание автокорреляционных функций r(t) и rчаст(t) оказывает существенную помощь в решении задачи подбора и идентификации модели анализируемого временного ряда.
Спектральная плотность p(w). Спектральную плотность стационарного временного ряда определяется через его автокорреляционную функцию соотношениемгде . Так как r(t) = r(-t), спектральная плотность может быть записана в виде
Следовательно, функция p(w) является гармонической с периодом 2p. График спектральной плотности, называемый спектром, симметричен относительно w = p. Поэтому при анализе поведения p(w) ограничиваются значениями 0 £ w £ p. Спектральная плотность принимает только неотрицательные значения.
Использование свойств этой функции в прикладном анализе временных рядов определяется как «спектральный анализ временных рядов». Достаточно полное описание этого подхода приведено, например, в [Дженкинс, Ватс (1971, 1972)] и [Ллойд, Ледерман (1990)]. Применительно к статистическому анализу экономических рядов динамики этот подход не получил широкого распространения, т.к. эмпирический анализ спектральной плотности требует в качестве своей информационной базы либо достаточно длинных стационарных временных рядов, либо нескольких траекторий анализируемого временного ряда (и та и другая ситуация весьма редки в практике статистического анализа экономических рядов динамики).
Для содержательного анализа важно, что величина спектральной плотности характеризует силу взаимосвязи, существующей между временным рядом xt и гармоникой с периодом 2p/w. Это позволяет использовать спектр как средство улавливания периодичностей в анализируемом временном ряду: совокупность пиков спектра определяет набор гармонических компонентов в разложении (1). Если в ряде содержится скрытая гармоника частоты w, то в нем присутствуют также периодические члены с частотами w/2, w/3 и т.д. Это так называемое «эхо», повторяемое спектром на низких частотах. Эффект «эха» анализировался в статье [Granger (1963)] на примере ряда ежемесячных безналичных расчетов между банками США за 1875–1958 гг.
Можно несколько расширить класс моделей стационарных временных рядов, используемых при анализе конкретных рядов экономической динамики [8].
Определение 2.2. Ряд называется слабо стационарным (или стационарным в широком смысле), если его среднее значение, дисперсия и ковариации не зависят от t.
2.2. Неслучайная составляющая временного ряда и методы его сглаживания
Существенную роль в решении задач выявления и оценивания трендовой, сезонной и циклической составляющих в разложении (1.1.1) играет начальный этап анализа, на котором:
· выявляется сам факт наличия/отсутствия неслучайной (и зависящей от времени t) составляющей в разложении (1.1.1); по существу, речь идет о статистической проверке гипотезы
H0: Ext = m = const (2.6)
(включая утверждение о взаимной статистической независимости членов исследуемого временного ряда) при различных вариантах конкретизации альтернативных гипотез типа
HА: Ext ¹ const;
· строится оценка (аппроксимация) для неизвестной интегральной неслучайной составляющей f(t) = c1fтр(t) + c2j(t) +c3y(t), т.е. решается задача сглаживания (элиминирования случайных остатков et) анализируемого временного ряда xt.
Методы выделения неслучайной составляющей в траектории, отражающей поведение временного ряда, подразделяются на два типа.
Методы первого типа (аналитические) основаны на допущении, что известен общий вид неслучайной составляющей в разложении (1)
f(t) = c1fтр(t) + c2j(t) +c3y(t). (2.8)
Например, если известно, что неслучайная составляющая временного ряда описывается линейной функцией времени f(t) = q0 + q1t, где q0 и q1 - некоторые неизвестные параметры модели, то задача ее выделения (задача элиминирования случайных остатков или задача сглаживания временного ряда) сводится к задаче построения хороших оценок и для параметров модели.
Методы второго типа (алгоритмические) не связаны ограничительным допущением о том, что общий аналитический вид искомой функции (2.8) известен исследователю. В этом смысле они являются более гибкими, более привлекательными. Однако «на выходе» задачи они предлагают исследователю лишь алгоритм расчета оценки для искомой функции f(t) в любой наперед заданной точке t и не претендуют на аналитическое представление функции (2.8).
Аналитические методы выделения (оценки) неслучайной составляющей временного ряда. Эти методы реализуются в рамках моделей регрессии, в которых в роли зависимой переменной выступает переменная xt, а в роли единственной объясняющей переменной - время t. Таким образом, рассматривается модель регрессии вида
xt = f(t, q) + et, t = 1,…, T, в которой общий вид функции f(t, q) известен, но неизвестны значения параметров q = (q0, q1,…, qm). Оценки параметров строятся по наблюдениям . Выбор метода оценивания зависит от гипотетического вида функции f(t, q) и стохастической природы случайных регрессионных остатков et.