Прогнозирование с учетом фактора старения информацииРефераты >> Кибернетика >> Прогнозирование с учетом фактора старения информации
(1.1)
Энтропия Шеннона является мерой неопределённости конечной схемы и обладает, как нетрудно заметить, рядом свойств, удовлетворяющим весьма общим приведённым выше требованиям.
Непрерывные случайные объекты не допускают введения конечной абсолютной меры неопределённости. В качестве относительной меры неопределённости количественной меры используется дифференциальная энтропия:
(1.2)
где f(x) – плотность распределения случайной величины х.
Можно указать и на некоторые другие меры неопределённости, удовлетворяющие общим требованиям:
(1.3)
(1.4)
(1.5)
(1.6)
(1.7)
(1.8)
Мера неопределённости второго рода (1.3) обладает тем свойством, отличным от остальных мер, что её максимум достигается на так называемых оценках Фишборна:
(1.9)
для простого отношения порядка предпочтения
,
что весьма важно для решения задач микроэкономического анализа, опирающегося на факты качественного, а не количественного содержания.
Вполне очевидно, что использование такой меры неопределенности допускает обобщение оценок Фишборна на более сложные отношения предпочтения, возникающие при анализе экономической ситуации.
Таким образом, для преодоления трудностей, возникающих в микроэкономическом анализе, обусловленных наличием фактора неопределенности, должна быть сформирована концепция информационно-статистического подхода к построению математических моделей и разработаны методы оценивания показателей по ограниченной информации с учетом сложного характера связей, присущих экономической системе при ее взаимодействии со средой. В математическом отношении это выражается, прежде всего, в разработке и применении вариационных принципов и методов, определяющих процедуру выбора экстремальных распределений случайных величин, которые содержат информацию не более того количества, которым располагает исследователь.
Весьма трудной проблемой является оценка микроэкономических показателей, статистическое обследование которых затрудняется чрезвычайно малым объемом наблюдений.
Теория оценивания по малому числу наблюдений, для многих задач которой типична неасимптотическая постановка проблем, еще нуждается в научном обосновании и разработке.
Сложность постановки и решения задач построения наилучших оценок для данной схемы при ограниченном объеме статистического материала обусловлена тем обстоятельством, что искомое решение часто в сильной степени зависит от конкретного типа распределения, объема выборки и не может быть объектом достаточно общей математической теории. Очевидно, что теория малых выборок из нормального распределения будет отличаться от теории малых выборок из равномерного распределения и т.д. С другой стороны необходимость разработки расчетно-экспериментальных методов оценивания микроэкономических показателей возникает из весьма важных задач.
По поводу определения понятия “малая выборка” существуют различные мнения. Так, например, одни утверждают, что если для принятия решения не хватает статистического материала, то надо прежде всего разрабатывать методы получения недостающих данных (“купить недостаточную информацию”).Очевидно, что в этом случае не берется в расчет объективная необходимость получить решения в условиях, когда дополнительную информацию при микроэкономическом анализе привлечь просто нет никакой возможности. Попытка определить малую выборку некоторым пределом числа наблюдений (n=10, например), ниже которого известные (традиционные) методы не дают необходимой обоснованности принимаемых решений, тоже не выдерживает критики, так как во всех этих подходах связь понятия “малая выборка” не увязывается на модельном уровне исследований с методами ее анализа.
Основным условием успешного анализа (извлечением из данной выборки требуемой информации) служит возможность принятия решения. Следовательно, критерием понятия “малая выборка” может служить достоверность принимаемого на ее основе решения. Традиционными в математической статистике показателями, характеризующими достоверность принимаемого решения, являются ошибки первого и второго рода (вероятности отвергнуть гипотезу, когда она верна, принять гипотезу, когда она неверна, соответственно). Не вдаваясь в теоретическое содержание ошибок первого и второго рода, заметим, что в общем случае решение можно считать обоснованным, если выполняется неравенство:
(1.10)
Следовательно, если применяемый аналитический аппарат с соответствующим статистическим критерием при анализе выборки данного объема не позволяет получить условие (1.10), то для принятия достоверного решения в этом случае выборка считается малой. Тем не менее, традиционно сложилось так, что в математической статистике широкое распространение получили критерии согласия и критерий Колмогорова. Безоговорочное применение этих критериев привело к формированию такого интуитивного понятия как эффект малой и большой выборки. Очевидно, что необходимость введения этого понятия обусловлено объективным существованием пределов работоспособности перечисленных выше критериев.
Таким образом, случайную выборку наблюдаемых значений микроэкономических показателей можно считать малой, если извлекаемая из нее с помощью определенного математического аппарата информация не может служить основанием для принятия достоверного решения, удовлетворяющего цели исследования.
Объектом исследования в микроэкономическом экспресс-анализе является, как правило, малая выборка случайных наблюдений, для которых традиционные критерии математической статистики неработоспособны. Очевидно, что результаты этого анализа для малых выборок будут зависеть от положенного в их основу аналитического аппарата, обеспечивающего такую статистическую интерпретацию результатов наблюдений, которая позволяла бы выборку рассматривать как некий эмпирический аналог генеральной совокупности, о свойствах которой в целом или о возможных выборках из нее можно судить о свойствах некоторых функций от случайно наблюдаемых величин (статистик).
2.ПРОГНОЗИРОВАНИЕ МИКРОЭКОНОМИЧЕСКИХ ПОКАЗАТЕЛЕЙ И ПРОЦЕССОВ