Нейрокомпьютеры
Рефераты >> Информатика >> Нейрокомпьютеры

Иными словами, изменяя величину порога Qп при gjÎ{0, 1} и k = 1, будем менять вид логической функции Z(ti+1). Если же kÎ{0, 1}, то функции (25), (26) принимают вид

В тех случаях, когда синаптические веса gjÎ{0, 1, –1} или принимают другие целочисленные значения, реализуемые формальным нейроном функции усложняются.

Блок-схема формального нейрона приведена на рисунке 2. Она содержит два блока: блок пространственной суммации (ПС) и блок формирования выходной функции sign ky(ti), который, в свою очередь, может быть построен по импульсному или статическому типу. В первом случае при выполнении условия возбуждения нейрона (ky(ti)³0) на выходе появляется единичный сигнал Z(ti+1) = e(t) априори заданной длительности t. После окончания этого сигнала ФН переходит в невозбужденное состояние и остается в нем до следующего выполнения условия возбуждения. Во втором случае при выполнении условия ky(ti)³0 нейрон переходит в единичное состояние и остается в нем до нарушения условия возбуждения.

В целом формально-логическая модель нейрона далека по своим возможностям от ее естественного прототипа и не отражает всех его свойств, в частности не учитывает процессов, протекающих на мембране нейрона. Данное обстоятельство служит основанием для перехода к более совершенным нейроподобным элементам динамического типа.

5.Динамические нейроны

Наиболее важным отличием нейроподобных элементов динамического типа – динамических нейронов (ДН) от формальных нейронов является не столько учет в них временной суммации (P’(t)¹0), сколько переход принципа «все или ничего», характерного для отдельных спайков, к градуальному способу кодирования информации. В соответствии с градуальным кодированием полагается, что выходной величиной нейрона служит интенсивность выходных спайков, которая, в свою очередь, зависит от количества и интенсивности входных сигналов, а также от величины порога нервной клетки. То обстоятельство, что в качестве входных и выходных величин при этом используются непрерывные зависимости, позволяет представить информационные процессы в нервной клетке в дифференциальной форме, т. е. в виде модели (10) или (12).

Блок-схема динамического нейрона, работающего в соответствии с алгоритмом (12), приведена на рисунке 3. Наряду с пространственным сумматором ПС1, формирующим сумму V(t) произведений gjxj(t), и пространственным сумматором ПС2, вычисляющим производную y’(t), в схеме ДН предусмотрен интегрирующий блок И для определения функции y(t), а также выходной блок ВБ, формирующий выходную зависимость Z(t).

В тех случаях, когда b=1и k = 1, сумматоры ПС1 и ПС2 можно объединить и представить схему на рисунке 3 в более простом виде, а именно так, как это показано на рисунке 4. Если теперь реализовать схему 4 на сопротивлениях, диодах и емкостях, то получим простейшую аналоговую модель динамического нейрона.

Рис. 2. Формальный нейрон.

Рис. 3. Динамический нейрон, работающий в соответствии с алгоритмом 12

Рис.4. Динамический нейрон, упрощенный вариант.

Рассмотренные схемы могут строиться как на дискретных, так и на интегральных элементах, а также в виде больших интегральных схем, содержащих десятки и сотни ДН на кристалле. Эти схемы довольно просты и компактны, но характеризуются неконтролируемым изменением параметров в функции от температуры и других внешних факторов. Данное обстоятельство затрудняет их использование в нейроподобных сетях больших размерностей. Более того, такие элементы не позволяют создавать практически приемлемые схемы с переменными во времени синаптическими весами и переменным порогом, т. к. Управляемое изменение электрических сопротивлений связано с определенными техническими трудностями. Все это стимулирует разработку и создание цифровых схем динамических нейронов, свободных от указанных недостатков.

6.Цифровые модели нейронов

Одно из важных направлений в области построения цифровых нейроподобных элементов связано с программированием универсальных ЭВМ, микроЭВМ, персональных ЭВМ для реализации на них алгоритмов как отдельных нейронов, так и их совокупностей, воспроизводящих информационные процессы в нейронных ансамблях и нейронных сетях. Особых проблем при программировании систем уравнений, основанных на алгоритмах типа (12), как правило, не возникает.

Однако имитация сугубо параллельных нейрофизиологических процессов на последовательных ЭВМ связана с большими временными затратами, что не всегда приемлемо с практической точки зрения. Поэтому применение ЭВМ классической архитектуры для реализации сетей динамических нейронов весьма ограничено, особенно в тех случаях, когда цифровая модель должна работать в реальном масштабе времени, например при организации биоуправляемых экспериментов по замене части нервной ткани ее имитационной моделью. Другая трудность использования ЭВМ для моделирования нейронов и нейронных сетей состоит в том, что любое изменение связей в моделируемой сети ведет к необходимости составления новых программ.

Все это вынуждает искать способы построения таких цифровых устройств, которые, с одной стороны, программно и аппаратно ориентированы на воспроизведение алгоритма обработки информации в отдельной нервной клетке, а с другой – пригодны для организации на их основе параллельных перестраиваемых нейроподобных ансамблей и структур. Подобные устройства могут строиться на базе современных однокристальных и секционированных микропроцессоров (МП). Получающиеся при этом структуры цифровых нейронов (ЦН) приобретают стандартный вид и могут быть представлены в виде схемы, показанной на рисунке 5.

Рис. 5. Структура цифрового нейрона.

Данная структура состоит из микропроцессорного устройства МПУ и подключенных к нему N портов ввода Пввj (j = 1, N) и одного порта вывода Пв. Она соответствует тому случаю, когда параметры gj ,b, k нейроподобной модели являются постоянными. Предполагается также и то, что программа алгоритма (12) хранится в постоянном запоминающем устройстве ПЗУ, а параметры, которые не меняются в процессе работы конкретной модели цифрового нейрона, но могут быть различными у разных ЦН, хранятся в оперативной памяти МПУ.


Страница: