Нейрокомпьютеры
Рефераты >> Информатика >> Нейрокомпьютеры

Далее учтем и то, что единственным достоверно установленным на сегодняшний день информативным параметром выходных спайков является величина их межимпульсных интервалов, т. е. частота следования нервных импульсов в функции от величины возбуждения нервной клетки.

Таким образом, в качестве выходных величин нервных клеток следует рассматривать не сами спайки и, естественно, не аппроксимирующие их сигналы прямоугольной формы e(t), а частоты их следования, которые в свою очередь отражают степень возбуждения нейрона в каждый момент непрерывного времени t. Более того, выходная функция Z(t) нейрона может быть представлена при этом либо в виде частоты следования сигналов e(t), либо непосредственно в виде аналоговых величин или цифровых кодов, отражающих степень возбуждения нервной клетки. При таком подходе три последних уравнения математической модели (8) можно заменить одним уравнением следующего типа:

Z(t) = max{0, k[P(t) - Qп]}, (9)

где Z(t) – частота, пропорциональная возбуждению P(t) - Qп нейрона либо кодирующая ее аналоговая или цифровая величина; k – коэффициент пропорциональности; max{0, k[P(t) - Qп]} – функция, выделяющая те интервалы изменения P(t), на которых справедливо нестрогое равенство P(t)³ Qп.

Очевидно, что если функция (9) является выходной, то для взаимосвязанных и взаимодействующих нейронов значения Z(t) должны служить и в качестве входных. Обозначая входные величины как xj(t), представим алгоритм информационных процессов в нервной клетке в виде более простой, чем (8), но эквивалентной ей математической модели:

(10)

где xj(t) – аналог интенсивности входных воздействий, поступающих на j-й вход нейрона с синаптическим весом gj; V(t) – аналог потенциала, характеризующего суммарное входное воздействие, получаемое в результате пространственной суммации; P(t) – аналог мембранного потенциала нейрона; Qп – аналог постоянного порогового потенциала нервной клетки; a =1/t; b=aki ; ki – коэффициент пропорциональности при V(t); Zmax - максимально возможное значение Z(t), определяемое абсолютной рефрактерностью моделируемой клетки.

Вводя в систему (10) обозначение возбудимости нейрона в виде функции

y(t) = P(t) – Qп, (11)

получим идеализированную математическую модель информационных процессов в нервной клетке, которая имеет следующий вид:

(12)

где Q = aQп; gj(t) – синаптический вес, величина которого может изменяться во времени под воздействием внешних факторов, например из-за аксо-аксонных взаимодействий.

Как и в модели (8), первое уравнение системы (12) описывает процесс пространственной суммации входных воздействий, но не в форме единичных спайков, а в более общей форме величин, имеющих смысл мгновенных частот их следования. Второе уравнение описывает закон изменения возбудимости нейрона y(t), а третье – определяет процесс формирования выходных величин, характеризующих текущее возбуждение нервной клетки.

Математическую модель (12) можно использовать для построения нейроподобных элементов и цифровых нейропроцессоров.

3.Модели адаптивных процессов в нейроне

Адаптация, или приспособление к изменяющимся условиям внешней среды, является одним из наиболее важных свойств всего живого. Это свойство проявляется не только на уровне всего организма, но и на уровне отдельных его подсистем, отдельных клеток и внутриклеточных образований. На этом основании были разработаны модели нейронов, описывающие адаптивные реакции нейрона. Суть таких реакций заключается в плавном понижении частоты выходной импульсации в ответ на продолжительное стационарное внешнее воздействие, имеющее вид ступенчатой функции. Переходная характеристика адаптивной модели в этом случае соответствует кривой 1 на рисунке 1. Кривая 2 на том же рисунке обозначает реакцию на то же входное воздействие V(t) неадаптивного нейрона.

Другим типом адаптивных реакций являются так называемые “on”, “off” и “on–off” ответы нервных клеток. Они наиболее характерны для рецепторных нейронов зрительного анализатора и возникают при световом раздражении сетчатки глаза.

По виду переходные характеристики “on”, “off” ответов отличаются от кривой 1 на рисунке 1 тем, что при возрастании времени t они довольно быстро стремятся к нулю, а не к некоторой, отличной от нуля, постоянной величине. Последнее обстоятельство приводит к выводу о возможности воспроизведения адаптивных “on”, “off” ответов путем дифференцирования реакций неадаптивного нейрона, а именно кривых типа 2 на рисунке 1. Действительно, в этом случае выходные импульсные последовательности будут появляться в моменты начала и окончания ступенчатого входного воздействия, что и соответствует “on”, “off” ответам нейрона. Легко показать, что такой простейший механизм адаптивного поведения можно воспроизвести при помощи математической модели (12) практически без ее усложнения.

Рис. 1. Переходные характеристики.

Пусть суммарное входное воздействие V(t), поступающее на синаптические входы нейрона, представляет собой ступенчатый сигнал h, определяемый соотношением:

(13)

Тогда при Q = 0 и b = 1 второе уравнение системы (12) примет вид

Решением уравнения (13) является функция

график которой совпадает с переходной характеристикой неадаптивной модели нейрона. Именно по этой причине устройство, реализующее алгоритм (12), может использоваться как искусственный неадаптивный нейрон.


Страница: