Нейрокомпьютеры
Рефераты >> Информатика >> Нейрокомпьютеры

где Vвхj(t) – выходной потенциал действия, поступающий на j-й синапс; N – количество синаптических контактов нейрона; gj – вес j-го синапса.

Если синапс возбуждающий, то соответствующий ему весовой коэффициент имеет положительный знак, в противном случае - отрицательный. Абсолютная величина этого коэффициента учитывает эффективность синапса (размеры синаптического контакта, место его расположения на дендрите или соме, расстояние от аксонного холмика и т. п.).

Учитывая отмеченные обстоятельства, математическую модель электрической активности нервных клеток, отражающую их информационную деятельность, можно представить в следующем виде:

В принципе модель (4) может быть использована для построения искусственных нейронов и нейронных сетей. Однако ее техническая реализация существенно затруднена нелинейным характером уравнения (1).

С целью преодоления этой трудности воспользуемся соотношением (2) и представим уравнение (1) в виде совокупности двух выражений, а именно линейного уравнения подпороговых изменений мембранного потенциала P(t)-Qп < 0 и надпорогового процесса формирования потенциала действия в виде функции f(t), аппроксимирующей форму спайка:

где ti – моменты возникновения спайков, т. е. те моменты времени t, при которых выполняется нестрогое равенство P(t)- Qп ³ 0.

В качестве кривой, форма которой близка к форме нервного импульса, может служить график хорошо известной в теории связи функции вида:

где T – период синусоидальной зависимости, стоящей в числителе.

(5)

Учитывая свойства функции f(t), нервный импульс можно описать следующим образом:

где ti – моменты времени, определяющие начало генерации очередных нервных импульсов (i=0, 1, 2, .); Vи - амплитуда нервного импульса; tи –длительность нервного импульса.

При вычислении моментов ti необходимо воспроизводить в модели абсолютную и относительную рефрактерность нервных клеток. Суть абсолютной рефрактерности заключается в том, что во время tи генерации спайка нейрон абсолютно невозбудим для приходящих в это же время входных воздействий, а в последующий период относительной рефрактерности возбудимость нейрона хотя и затруднена, но принципиально возможна.

С целью моделирования рефрактерности введем такой переменный во времени порог Q(t), максимальное значение Qи которого в моменты ti нарушает условие возбуждения и удерживает нейрон некоторое время в абсолютно невозбудимом состоянии, после чего Q(t) постепенно возвращается к величине Qп в соответствии с уравнением

(6)

где t - постоянная времени мембраны нервной клетки; Qп – порог покоя; Qм – максимально возможное значение порога.

Условие возбуждения нейрона примет следующий вид:

P(t) - Q(t) ³ 0 (7)

(8)

С учетом отмеченных обстоятельств получаем следующую математическую модель информационных процессов в нервной клетке:

Первое уравнение системы (8) воспроизводит процесс пространственной суммации возбуждающих и тормозных входных воздействий Vвх(t), поступающих в момент времени t на все синаптические контакты нейрона. Второе уравнение моделирует процесс входной суммации входных воздействий в области аксонного холмика и отражает кумулятивные свойства нейрона. Третье, четвертое и пятое соотношения описывают процесс генерации спайков с учетом условия возбуждения нейрона (7), его рефрактерности и формы генерируемых импульсов.

Рассмотренная модель (8) довольно точно отражает современные нейрофизиологические представления об информационной деятельности нервных клеток. Кроме того, она проще исходной модели (4), поскольку не содержит нелинейного уравнения (1). Все это позволяет использовать ее в качестве основы для построения искусственных нейронов и нейронных сетей, воспроизводящих подпороговые и надпороговые процессы спайковой активности с учетом формы нервных импульсов. Воспроизведение рефрактерности и формы спайков, в свою очередь, весьма актуально при организации биоуправляемых экспериментов, поскольку организация таких экспериментов предполагает согласование входных и выходных параметров сопрягаемых естественных и искусственных нейронов. Однако в случае моделирования информационных процессов в сетях взаимосвязанных интернейронов, которые не должны взаимодействовать с естественными нейронами, алгоритм (8), а также реализующий его искусственный нейрон могут быть существенно упрощены.

Так, с целью упрощения модели (8) прежде всего, учтем тот экспериментально установленный факт, что ни амплитуда нервных импульсов, ни их форма не участвуют в кодировании информации, передаваемой от клетки к клетке. Следовательно, без ущерба для информационной адекватности модели (8) ее биологическому прототипу спайк Vвых(t) можно аппроксимировать не функцией (5), а более простым прямоугольным импульсом e(t) единичной амплитуды и длительности, равной tи. Очевидно, что при этом как сама модель, так и ее технический аналог заметно упрощается.


Страница: