Селекция зерновых культур на повышение продуктивностиРефераты >> Ботаника и сельское хоз-во >> Селекция зерновых культур на повышение продуктивности
Высокий уровень использования в зарубежных технологиях химических средств, механизация и мелиорация приводят к загрязнению биосферы, засолению почв, развитию эрозионных процессов, увеличению затрат на единицу продукции, росту цен на средства труда, дефициту водных и энергетических ресурсов. Эти издержки интенсивной технологии возделывания зерновых находят отражение в снижении приростов их урожайности, наблюдающемся в ряде развитых стран. Поэтому, если базироваться только на существующих технологиях, вряд ли можно надеяться на получение в дальнейшем более высоких приростов урожайности, чем в 60—70-е годы XX века. Обеспечить необходимые темпы роста продуктивности зерновых культур позволит лишь перевод технологии их возделывания на качественно новый уровень. По мнению зарубежных специалистов в условиях снижения на мировом рынке цен на зерно и возрастания требований к охране окружающей среды необходимо расширение применения интегрированных ресурсосберегающих технологий (Ковалев, Касаева, Семенова и др., 1989).
Сейчас стало очевидным, что роль селекции в решении этих вопросов будет все больше возрастать. Сорт является наиболее надежным и экономически выгодным фактором повышения уровня урожайности и ее стабильности.
СВЯЗЬ ФОТОСИНТЕЗА С ПРОДУКТИВНОСТЬЮ РАСТЕНИЙ
Теория фотосинтетической продуктивности.
Фотосинтез был открыт 230 лет назад, но очень долго это направление в науке было далеким от практических задач агрономии. Только в начале ХХ века были сделаны первые попытки, объяснить формирование фитомассы с помощью каких-то отдельных показателей (интенсивность и чистая продуктивность фотосинтеза, площадь листьев). Однако это направление оказалось безуспешным. Академик РАН А.Т.Мокроносов (1983) выделил три этапа последовательного приближения исследователей фотосинтеза к концепции продуктивности (в том числе хозяйственного урожая).
Первый шаг в этом направлении был сделан Л.А.Ивановым в 1941году. Если в более ранних работах исследователи пытались найти прямую зависимость между урожаем и каким-то отдельным показателем, то он предложил балансовое уравнение, в котором выразил зависимость между общей фитомассой и интенсивностью фотосинтеза, размерами ассимиляционного аппарата, временем его работы с одной стороны и дыханием с другой.
На следующем этапе разрабатывалась теория фотосинтетической деятельности растений в фитоценозах как основа их продуктивности. Это направление получило развитие в работах А.А.Ничипоровича, А.К.Оканенко, Л.М.Дорохова, Г.П.Устенко, И.С.Шаталова, Б.И.Гуляева, Ю.К.Росса, Х.Г.Тооминга, И.А.Тарчевского и др., а также за рубежом. В результате были разработаны основные положения теории фотосинтетической деятельности не отдельно взятого растения, а фитоценоза как целостной системы. Поэтому продуктивность фитоценозов, в т.ч. и хозяйственный урожай агроэкосистем, стали рассматривать, прежде всего, как результат их фотосинтетической деятельности. Благодаря этим работам фотосинтез стал не только чисто биологической проблемой, но и агрономической. Экспериментальные данные по фотосинтетической деятельности агрофитоценозов стали успешно применять для квалифицированного решения многих вопросов агрономической практики (Гуляев и др., 1989). Изучение основных показателей продукционного процесса фитоценозов было включено одним из главных вопросов в Международную Биологическую Программу, которая проводилась в течение 10 лет (1964-1974). В ней участвовали не только институты АН СССР и университеты, но также сельскохозяйственные НИИ, сельскохозяйственные ВУЗы и опытные станции.
Значительно позже в нашей стране началось изучение возможностей применения основных показателей фотосинтетической деятельности растений и продукционного процесса в селекции. Так как на основе теории фотосинтетической продуктивности удалось установить тесную связь между фотосинтезом и урожаем для многих культур, то она позволила определить характер и возможные изменения этих характеристик в процессе селекции. На примере отдельных культур исследователям удалось проследить общие тенденции эволюции фотосинтетических функций растений (Быков, Зеленский, 1982).
На современном этапе появилась настоятельная необходимость и реальная возможность более органично связать теорию фотосинтетической продуктивности с нефотосинтетическими процессами. Поэтому на повестку дня поставлена разработка общей теории продукционного процесса на основе теории фотосинтетической продуктивности (Мокроносов, 1983; Ничипорович, 1988 и др.). При этом главное внимание должно быть уделено не экстенсивным факторам (увеличение размеров ассимилирующих органов и фотосинтетических потенциалов), а в первую очередь показателям, характеризующим производительность продукционного процесса.
В разрабатываемой теории продукционного процесса значительно больше внимания следует также уделить донорно-акцепторным отношениям, которые характеризуют сам процесс формирования подземной и надземной фитомассы, в том числе хозяйственного урожая. Причем эти закономерности целесообразно учитывать не только количественными показателями сухого вещества, но и энергетическими (Коломейченко, 2001). Установлено, что более полная энергетическая характеристика любых сельскохозяйственных культур, севооборотов и природных фитоценозов может быть дана с помощью следующих трех показателей:
а) коэффициент использования ФАР во времени (Кв.), показывающий ее долю от поступившей за потенциально возможный вегетационный период со среднесуточной температурой выше +30 С°;
б) коэффициент использования ФАР в пространстве (Кп), т.е. общепринятый сейчас КПД ФАР;
в) коэффициент биоэнергетической эффективности (Кб), характеризующий отношение энергии хозяйственного урожая к антропогенной, которая была затрачена на его выращивание и уборку.
Одним из важнейших недостатков в теории фотосинтетической продуктивности было полное игнорирование качеством урожая. При разработке теории продукционного процесса потребуется более тесная кооперация с биохимиками, чтобы квалифицированно объединить количественные и качественные показатели, характеризующие процесс формирования урожая.
Количественные показатели фотосинтеза и продуктивности.
Измерение интенсивности фотосинтеза. Как известно, открытие фотосинтеза произошло в 1771 году, когда Дж. Пристли обнаружил способность растений исправлять состав воздуха, испорченного горением свечи или дыханием животного (Полевой, 1989). Это и предопределило на два века вперед способ измерения интенсивности фотосинтеза. Для этого в специальной прозрачной камере, в которую помещали растение, лист, суспензию хлоропластов или водорослей, на свету оценивали скорость убывания концентрации углекислоты или увеличения концентрации кислорода. Соответственно и интенсивность процесса рассчитывали как количество поглощенной углекислоты или выделившегося кислорода (в мкл или мг) в расчете на единицу поверхности или массы листьев. Поскольку интенсивность фотосинтеза единицы поверхности или массы листьев сильно варьировали, то в некоторых случаях возникала необходимость оценивать эффективность работы единицы массы фотосинтетических пигментов, и тогда поглощение СО2 или выделение О2 рассчитывали на единицу содержания хлорофилла.