Исследование электрохимического поведения ионов самария в хлоридных и хлоридно-фторидных расплавах
Содержание:
Стр.
1. Введение
2. Глава I
Физико-химические свойства и электрохимическое поведение гало-
генидов РЗМ в расплавах солей.
2.1 Диаграммы состояния систем хлорид (фторид) самария - хлорид
(фторид) щелочного металла. Диаграмма состояния металлической
системы Ag - Sm
2.2 Строение расплавов систем хлорид (фторид) самария - хлорид
(фторид) щелочного металла
2.3 Электропроводность, поверхностное натяжение, плотность
расплавов хлорид (фторид) самария - хлорид (фторид) щелочного
металла
2.4 Электрохимическое поведение ионов РЗМ в хлоридных расплавах
2.5 Постановка задачи
3. Глава II
Методы исследования и методика проведения эксперимента.
3.1 Выбор электролитических методов исследования электродных
процессов в расплавленных средах и применяемая аппаратура
3.2 Теория электродных процессов с последующими химическими
реакциями
3.3 Приборы и оборудование, применяемые в работе
3.4 Конструкция высокотемпературной кварцевой ячейки
и электродов
3.5 Схемы вакуумной системы и системы очистки и осушки аргона
3.6 Методы получения безводных галогенидов РЗМ. Получение
безводного SmCl3
4. Глава III
Исследование механизма электровосстановления ионов самария в
хлоридных и хлоридно - фторидных расплавах.
4.1 Вольтамперные измерения на серебряном электроде в
самарийсодержащих хлоридных расплавах
4.2 Вольтамперные измерения на платиновом электроде в
самарийсодержащих хлоридных расплавах
4.3 Влияние фторид-иона на процесс электровосстановления ионов
самария в хлоридно-фторидных расплавах
4.4 Анализ вольтамперных зависимостей по диагностическим кри-
териям и механизм восстановления Sm3+ -иона в галогенидных рас-
плавах
5. Выводы
6. Список использованной литературы
1. Введение.
В связи с возрастающим применением РЗМ и различных материалов на их основе и с добавками редкоземельных металлов в различных областях науки и техники, в частности, в химической, металлургической, стекольной промышленности, в атомной, медицинской технике; электронике, в сельском хозяйстве и др., актуальной становится задача получения этих материалов. Перспективным способом получения РЗМ, их сплавов с другими металлами является электролиз расплавленных солей РЗЭ, а также их смесей.
Для эффективного использования электролитического метода получения РЗМ необходимо располагать надежной информацией об электрохимическом поведении комплексов, образуемых ионами РЗЭ в расплавах, а также химических реакциях, сопровождающих процессы электроосаждения. Поэтому основное внимание в работе будет уделено исследованию именно этого аспекта: поведения ионов РЗМ в расплавах, особенно ионов Sm3+.
Глава I
Физико-химические свойства и электрохимическое поведение галогенидов РЗМ в расплавах солей.
2.1 Диаграммы состояния систем хлорид (фторид) самария - хлорид (фторид) щелочного металла. Диаграмма состояния металлической системы Sm - Ag.
Возможность применения расплавленных солей для получения РЗЭ и их сплавов подтверждена многими исследователями. Для совершенствования технологии получения РЗЭ и их сплавов с другими металлами необходимы сведения о физико-химических свойствах перспективных с точки зрения практического использования расплавленных солевых сред и о взаимодействии компонентов расплавов между собой и с РЗЭ, контактирующих с ними.
Комплексы системы NaF - LnF3.*
Полные фазовые диаграммы NaF - ScF3 [ 1 ], NaF - YF3 [ 2 ] и NaF - MeF3 (Ме - лантаноиды, кроме Ce и Pm ) опубликованы Тома с сотрудниками, результаты подобных исследований системы NaF - CeF3 опубликованы в работе [ 3 ]. В ситемах NaF - CeF3 и NaF - LaF3 образуется одно равновесное соединение вида NaMeIIIF4. Однако два равновесных комплекса типов NaMeIIIF4 и Na5Me9IIIF32 (MeIII - Y, Pr - Lu) наблюдаются для всех других систем, кроме NaF - ScF3. Комплексы 1:1 NaMeIIIF4 (МеIII - Y, Pr - Lu) имеют гексагональную симметрию при низкой температуре, но выше 700(С они превращаются [ 4 ] в неупорядоченные кубические фазы переменного состава, подобные флюориту. Верхний предел состава кубических фаз соответствует составу Na5Me9IIIF32, в то время, как нижний предел простирается от 55,5 мол.% МeF3 для SmF3 до 39 мол.% MeF3 для LuF3.
Твердые растворы кубической симметрии неустойчивы при температурах ниже 800-530(С, и они при охлаждении переходят в различные продукты, состав которых зависит от состава разлагающихся фаз. Например, при эквимолярных составах NaF - MeF3 наблюдается частичное упорядочение и образуется фаза NaMeIIIF4 с гексагональной симметрией. Из фазы Na5Me9IIIF32 в системах от NaF - DyF3 до NaF - LuF3 первоначально образовавшаяся кубическая фаза переходит в орторомбическую того же состава, в то время как в системах от NaF - PrF3 до NaF - TbF3 образуются гексагональные NaMeIIIF4 и MeF3. Кроме Na5La9F32 эта орторомбическая фаза неустойчива и при низких температурах переходит в NaMeIIIF4 и MeF3.
*Ln - здесь и далее означает лантаноид.
Комплексы систем: KF, RbF, CsF - LnF3.
Опубликовано относительно небольшое число сведений о комплексах, образуемых KF c трифторидами лантаноидов. Комплексы 1:1 трехвалентных лантана и церия существуют в виде двух кристаллических форм [ 5-8 ], подобно многим аналогичным комплексам натрия. Показано, что (-KLaF4 изоструктурен с NaNdF4 [ 8 ]. Опубликованы сообщения [ 9, 10 ] о получении комплексов 3:1 Ce, Sm, Er, хотя их существование не подтверждено.
Получены также другие соли щелочных металлов: соединения лантаноидов 1:1 [ 11, 12] RbMeIIIF4 (MeIII - La, Ce, Pr), соединения 3:1 [ 9, 10, 13, 14] Rb3MeIIIF6 (MeIII - Y, La, Ce, Pr, Sm, Tb, Er) и Cs3MeIIIF6 (MeIII - Y, La, Ce, Pr, Sm, Gd, Dy, Ho, Er).
Диаграмма состояния системы NaF - SmF3 [ 15 ] приведена на рис. 2.1, результаты термического анализа - в таблице N1.
Линия ликвидуса состоит из полей NaF, NaSmF4, Na5Sm9F32, SmF3. В системе образуются два химических, инконгруэнтно плавящихся соединения: NaSmF4, Na5Sm9F32. В области составов от 55,5 до 64,3 мол.% SmF3 образуются твердые растворы кубической структуры. При температуре 569(С гексагональная модификация SmF3 переходит в орторомбическую.
Таблица N1
Нонвариантные точки.
Обозна-
чениеt, (C Состав,
мол.% Твердые фазыХарактер точек NaFSmF3 C 76544,5055,50Na5Sm9F32(тв.р-ры), NaSmF4(тв.р-ры), NaSmF4 Переходная E 72575,9424,06NaF, NaSmF4 Эвтектика P1 83462,7137,29NaSmF4, Na5Sm9F32
(тв. р-ры) Перитектика P2 106038,0062,00SmF3, Na5Sm9F32
(тв. р-ры) Перитектика
SmF3, мол.%
- фазы твердых растворов кубической симметрии
( - фазы орторомбической симметрии
рис. 2.1.
Диаграмма состояния системы NaF - SmF3.
Комплексы систем MeCl - LnCl3.
В системах YCl3 - MeCl термическим анализом установлено существование инконгруэнтно плавящихся соединений Na3YCl6 и K3YCl6, а также соединений состава Me2LnCl5 и Me3LnCl6 для La, Ce, Nd (Me - K, Rb, Cs) [ 16 ]. Аналогичные соединения установлены термографическими исследованиями системы KCl - LnCl3, где для La и Sm показано образование соединений K2LnCl5, а для Ce, Pr, Sm, Nd - K3LnCl6. На основании хода кривых ликвидуса в системе NaCl - SmCl3 сделано предположение об образовании соли Na2SmCl5. В системах SmCl3 - MeCl (Me - K, Rb, Cs) предполагается состав Me3SmCl6. Из расплавов выделены соли K2LnCl5 и K3LnCl6, содержащие Nd и Pr [ 17 ].