Жидкостное химическое травление
Рис. 15. Зависимость угла травления поликремния Q от содержания воды в травителе KOH/спирт/Н2О. Эффективность сглаживания поверхности поликремния в смеси KOH и спирта зависит от содержания воды в травителе. В безводных спиртах получаются изотропные профили. Степень анизотропии определяется содержанием воды в травители (рис. 15). Изотропные травители для кремния перечислены в табл. 6. Краткие сведения об анизотропных травителях для кремния приведены в табл. 7.
Таблица 5. Изотропное и анизотропное травление кремния.
Травитель | Скорость травления, мкм/мин | Подтравливание (мкм/сторону)1) | |||||||||||||||||
| PS | ES | BS | PS | ES | BS | |||||||||||||
Изотропный2) Изотропный3) Анизотропный4) | 3 0.8 0.7 | 4 0.6 0.9 | 4 0.5 1.1 | 1.5d 1.0d (0.1-1.0)d | 1.5d 1.0d <0.1d | 1.5d 1.0d <0.1d |
1) d- глубина травления. 2) HNO3 (65%)/HF(40%)/NaNO2=95/5 мл/г.
3) HNO3(65%)/H2O/HF(40%)=100/40/6мл. 4) KOH/H2O/n-пропанол=15г/50/15 мл.
Таблица 6. Изотропные травители для кремния.
Травитель | Применение |
HF, HNO3, CH3COOH HF, HNO3, CH3COOH HF, KMnO4, CH3COOH HF, HNO3, H2O2+NH4OH HF, HNO3, CH3COOH HF, HNO3 NH4F, H2O2 HF, HNO3, I2 HF, HNO3, CH3COOH HNO3, HBF4, NH4BF4 NH4F, H2O2, NH4HPO4 KOH+спирт |
Все разновидности Si Низкоомный Si Эпитаксиальный Si Удаление примесей Cu pnp - многослойные структуры pnp - многослойные структуры Минимальное подтравливание Общее травление Подтравливание плоскости (100) Маска из резиста AZ-1350 Скорости травления, Si/ФСС=2/1 Поликристаллический Si |
Таблица 7. Анизотропные травители для кремния.
Травитель | Применение |
Этиледиамин, пирокатехин, H7O Этиледиамин, пирокатехин Гидразин, ИПС, H2O КОН, sec-спирты КОН, этиленгликоль Диамины, КОН, ИПС КОН, ИПС, H2O R3N+OH, ИПС, H2O R3N+OH, поверхностно-активное ве-щество R3N+OH H3PO4+следы As2O3 CuF2, маска из резиста AZ-1350 |
100 SiO2, Si3N4, выявление точечных проколов 100, Al-маска 100 Текструрирование элементов солнеч-ных батарей Не разрушается Al 100 100 H2 Устранение Na+ из травителя n-тип Электролитическое травление |
Травление многослойных структур.
Травление различных слоев многослойной структуры проводится в одном травителе простого или сложного состава. Желательно пользоваться однокомпонентным травителем. Основная проблема заключается в выборе травителя, обеспечивающего одинаковую скорость травления всех слоев, что предотвращает образование “елочного” профиля. Наиболее интенсивно изучалось травление сандвича Si3N4/SiO2, равенство скоростей травления которого требуется для получения окон с гладкими наклонными стенками. Пленки Si3N4 травятся лишь в HF или в кипящей H3PO4 при 180оС. В столь жестких условиях ни один из органических резистов не выдерживает. Травление Si3N4 в HF происходит по тому же закону, который определил Джадж для травления SiO2:
Cкорость травления=А(HF)+B(HF2-)+C (37)
Керн и Деккерт всесторонне рассмотрели травление Si3N4. В HF модно получить равные, но небольшие - около 10 нм/мин - скорости травления Si3N4 и SiO2: 1) подбором температуры и 2) соотношения HF/HF2-. Скорость травления оксида можно снизить до 10 нм/мин, разбавляя 10%-ную плавиковую кислоту. При низкой концентрации HF растворение SiO2 лимитируется не скоростью реакции, а диффузией (4 ккал/моль). Подбирая температуру смеси фосфорной или фторборной кислот, можно довести скорости травления SiO2 и Si3N4 до 10 нм/мин. Фосфорная кислота, однако, разрушает нижележащие слои Si и Al, что может быть уменьшено добавлением серной кислоты. Добавка диолефинов также предотвращает разрушение нижележащего слоя Al.
Рис.16. Травление сандвича Si3N4/SiO2: а-большая скорость травления SiO2; б-изотропное травление с одинаковыми скоростями. Более высокие, но равные скорости травления были получены за счет изменения вязкости травителя при добавлении глицерина или других вязких спиртов (до 50% по массе), замещающих воду. Для смягчения действия HF добавляется также NH4F. Типичные края профилей травления в Si3N4/SiO2 показаны на рис. 16.
В другом подходе, включающем в себя обратное травление, используется слой вольфрама, нанесенный поверх