Дифференциальные уравнения движения точки. Решение задач динамики точки
или (12)
Уравнение (12) называют дифференциальным уравнением прямолинейного движения точки. Иногда его удобнее заменить двумя уравнениями, содержащими первые производные:
(13)
В случаях, когда при решении задачи надо искать зависимость скорости от координаты х, а не от времени t (или когда сами силы зависят от х), уравнение (13) преобразуют к переменному х. Так как dVx/dt=dVx/dx*dx/dt=dVx/dx*Vx, то вместо (13) получим
(14)
Решение основной задачи динамики сводится к тому, чтобы из данных уравнений, зная силы, найти закон движения точки, т. е. x=f(t). Для этого надо проинтегрировать соответствующее дифференциальное уравнение. Чтобы яснее было, к чему сводится эта математическая задача, напомним, что входящие в правую часть уравнения (12) силы могут зависеть от времени t, от положения точки, т. е. от х, и от ее скорости, т. е. от Vy=x. Следовательно, в общем случае уравнение (12) с математической точки зрения представляет собой дифференциальное уравнение 2-го порядка, имеющее вид .
Если для данной конкретной задачи дифференциальное уравнение (12) будет проинтегрировано, то в полученное решение войдут две постоянные интегрирования и и общее решение уравнения (12) будет иметь вид
(15)
Чтобы довести решение каждой конкретной задачи до конца, надо определить значения постоянных . Для этого используются обычно так называемые начальные условия.
Изучение всякого движения будем начинать с некоторого определенного момента времени, называемого начальным моментом. От этого момента будем отсчитывать время движения, считая, что в начальный момент t=0. Обычно за начальный принимают момент начала движения под действием заданных сил. Положение, которое точка занимает в начальный момент, называется начальным положением, а ее скорость в этот момент — начальной скоростью (начальную скорость точка может иметь или потому, что до момента t=0 она двигалась по инерции, или в результате действия на нее до момента t=0 каких-то других сил). Чтобы решить основную задачу динамики, надо кроме действующих сил знать еще начальные условия, т. е. положение и скорость точки в начальный момент времени.
В случае прямолинейного движения начальные условия задаются в виде
При t=0 ,. (16)
По начальным условиям можно определить конкретные значения постоянных и найти частное решение уравнения (12), дающее закон движения точки, в виде
(17)