Дифференциальные уравнения движения точки. Решение задач динамики точки
Рефераты >> Физика >> Дифференциальные уравнения движения точки. Решение задач динамики точки

Сила упругости. Эта сила тоже зависит от расстояния. Ее значение можно определить исходя из закона Гука, согласно которому напряжение (сила, отнесенная к единице площади) пропорционально деформации. В частности, для силы упругости пружины получается значение

F=cl (6)

где l — удлинение (или сжатие) пружины; с — так называемый коэффициент жесткости пружины (в СИ измеряется в Н/м).

Сила вязкого трения. Такая сила, зависящая от скорости, действует на тело при его медленном движении в очень вязкой среде (или при наличии жидкой смазки) и может быть выражена равенством

R=mv (7)

где v — скорость тела; m, — коэффициент сопротивления. Зависимость вида (7) можно получить исходя из закона вязкого трения, открытого Ньютоном.

Сила аэродинамического (гидродинамического) сопротивления. Эта сила тоже зависит от скорости и действует на тело, движущееся в такой, например, среде, как воздух или вода. Обычно ее величину выражают равенством

(8)

где р — плотность среды; S — площадь проекции тела на плоскость, перпендикулярную направлению движения (площадь миделя);

Сx:—безразмерный коэффициент сопротивления, определяемый обычно экспериментально и зависящий от формы тела и от того, как оно ориентировано при движении.

Инертная и гравитационная массы.

Для экспериментального определения массы данного тела можно исходить из закона (1), куда масса входит как мера инертности и называется поэтому инертной массой. Но можно исходить и из закона (5), куда масса входит как мера гравитационных свойств тела и называется соответственно гравитационной (или тяжелой) массой. В принципе ни откуда не следует, что инертная и гравитационная массы представляют собой одну и ту же величину. Однако целым рядом экспериментов установлено, что значения обеих масс совпадают с очень высокой степенью точности (по опытам, проделанным советскими физиками (1971 г.),— с точностью до ). Этот экспериментально установленный факт называют принципом эквивалентности. Эйнштейн положил его в основу своей общей теории относительности (теории тяготения).

Исходя из изложенного, в механике пользуются единым термином «масса», определяя массу как меру инертности тела и его гравитационных свойств.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ ТОЧКИ. РЕШЕНИЕ ЗАДАЧ ДИНАМИКИ ТОЧКИ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ МАТЕРИАЛЬНОЙ ТОЧКИ

Для решения задач динамики точки будем пользоваться одной из следующих двух систем уравнений.

Уравнения в декартовых координатах.

Из кинематики известно, что движение точки в прямоугольных декартовых координатах задается уравнениями:

(9)

Задачи динамики точки состоят в том, чтобы, зная движение точки, т. е. уравнения (9), определить действующую на точку силу или, наоборот, зная действующие на точку силы, определить закон ее движения, т.е. уравнения (9). Следовательно, для решения задач динамики точки надо иметь уравнения, связывающие координаты х, у,zг этой точки и действующую на нее силу (или силы). Эти уравнения и дает второй закон динамики.

Рассмотрим материальную точку, движущуюся под действием сил ., по отношению к инерциальной системе отсчета Охуг. Проектируя обе части равенства (2), т.е. равенства оси х, у, zг и учитывая, что и т.д., получим

(10)

или, обозначая вторые производные по времени двумя точками,

(10')

Это и будут искомые уравнения, т.е. дифференциальные уравнения движения точки в прямоугольных декартовых координатах. Так как действующие силы могут зависеть от времени t, от положения точки, т. е. от ее координат х, у,z, и от скорости, т. е. от , , то в общем случае правая часть каждого из уравнений (10) может быть функцией всех этих переменных, т. е. t, х, у, z, одновременно.

Уравнения в проекциях на оси естественного трехгранника. Для получения этих уравнений спроектируем обе части равенства на оси Mtnb, т.е. на касательную Мt: к траектории точки, главную нормаль Мп, направленную в сторону вогнутости траектории, и бинормаль Mb

. Тогда, учитывая, что , , получим

(11)

Уравнения (11), где v=ds!dt, представляют собой дифференциальные уравнения движения точки в проекциях на оси естественного трехгранника.

РЕШЕНИЕ ПЕРВОЙ ЗАДАЧИ ДИНАМИКИ

(ОПРЕДЕЛЕНИЕ СИЛ ПО ЗАДАННОМУ ДВИЖЕНИЮ)

Если ускорение движущейся точки задано, то действующая сила или реакция связи сразу находится по уравнениям (1) или (2). При этом для вычисления реакции надо дополнительно знать активные силы. Когда ускорение непосредственно не задано, но известен закон движения точки, то для определения силы можно воспользоваться уравнениями (10) или (11).

РЕШЕНИЕ ОСНОВНОЙ ЗАДАЧИ ДИНАМИКИ ПРИ ПРЯМОЛИНЕЙНОМ ДВИЖЕНИИ ТОЧКИ

Движение материальной точки будет прямолинейным, когда действующая на нее сила (или равнодействующая приложенных сил) имеет постоянное направление, а скорость точки в начальный момент времени равна нулю или направлена вдоль силы.

Если при прямолинейном движении направить вдоль траектории координатную ось Ох, то движение точки будет определяться первым из уравнений (10), т. е. уравнением


Страница: