Дифференциальные уравнения движения точки. Решение задач динамики точки
Второй закон динамики, как и первый, имеет место только по отношению к инерциальной системе отсчета. Из этого закона непосредственно видно, что мерой инертности материальной точки является ее масса, поскольку при действии данной силы точка, масса которой больше, т. е. более инертная, получит меньшее ускорение и наоборот.
Если на точку действует одновременно несколько сил, то они, как это следует из закона параллелограмма сил, будут эквивалентны одной силе, т. е. равнодействующей , равной геометрической сумме данных сил. Уравнение, выражающее основной закон динамики, принимает в этом случае вид
или (2)
Этот же результат можно получить, используя вместо закона параллелограмма закон независимости действия сил, согласно которому при одновременном действии на точку нескольких сил каждая из них сообщает точке такое же ускорение, какое она сообщила бы, действуя одна.
Третий закон (закон равенства действия и противодействия) устанавливает характер механического взаимодействия между материальными телами. Для двух материальных точек он гласит:
две материальные точки действуют друг на друга с силами, равными по модулю и направленными вдоль прямой, соединяющей эти точки, в противоположные стороны.
Этим законом пользуются в статике. Он играет большую роль в динамике системы материальных точек, как устанавливающий зависимость между действующими на эти точки внутренними силами.
При взаимодействии двух свободных материальных точек, они, согласно третьему и второму законам динамики, будут двигаться с ускорениями, обратно пропорциональными их массам.
Задачи динамики. Для свободной материальной точки задачами динамики являются следующие:
1) зная закон движения точки, определить действующую на нее силу (первая задача динамики);
2) 2) зная действующие на точку силы, определить закон движения точки (вторая, или основная, задача динамики).
Для несвободной материальной точки, т. е. точки, на которую наложена связь, вынуждающая ее двигаться по заданной поверхности или кривой, первая задача динамики обычно состоит в том, чтобы, зная движение точки и действующие на нее активные силы, определить реакцию связи. Вторая (основная) задача динамики при несвободном движении распадается на две и состоит в том, чтобы, зная действующие на точку активные силы, определить: а) закон движения точки, б) реакцию наложенной связи.
СИСТЕМЫ ЕДИНИЦ
Для измерения всех механических величин оказывается достаточным ввести независимые друг от друга единицы измерения каких-нибудь трех величин. Двумя из них принято считать единицы длины и времени. В качестве третьей оказывается наиболее удобным выбрать единицу измерения или массы, или силы. Так как эти величины связаны равенством (1), то произвольно единицу измерения каждой из них выбрать нельзя. Отсюда вытекает возможность введения в механике двух принципиально отличных друг от друга систем единиц.
Первый тип систем единиц.
В этих системах за основные принимаются единицы длины, времени и массы, а сила измеряется производной единицей.
К таким системам относится Международная система единиц измерения физических величин (СИ), в которой основными единицами измерения механических величин являются метр (м), килограмм массы (кг) и секунда (с). Единицей же измерения силы является производная единица — 1 ньютон (Н);
1 Н — это сила, сообщающая массе в 1 кг ускорение 1 м/с2 (1Н==1 кг-м/с2). О том, что собой представляют 1 м, 1 кг и 1 с, известно из курса физики. Международная система единиц (СИ) введена в России как предпочтительная с 1961 г
Второй тип систем единиц.
В этих системах за основные принимаются единицы длины, времени и силы, а масса измеряется производной единицей.
К таким системам относится имевшая большое распространение в технике система МКГСС, в которой основными единицами являются метр (м), килограмм силы (кГ) и секунда (с). Единицей измерения массы в этой системе будет 1 кГс2 /м, т. е. масса, которой сила в 1 кГ сообщает ускорение 1 м/с2.
Соотношение между единицами силы в системах СИ и МКГСС таково: 1 кГ=9,81 Н или 1 Н=0,102 кГ.
В заключение необходимо отметить, что надо различать понятия размерность величины и единица ее измерения. Размерность определяется только видом уравнения, выражающего значение данной величины, а единица измерения зависит еще от выбора основных единиц. Например, если, как это принято, обозначать размерность длины, времени и массы соответственно символами L, Т и М, то размерность скорости L/Т, а единицей измерения может быть 1 м/с, 1 км/ч и т. д.
ОСНОВНЫЕ ВИДЫ СИЛ
Рассмотрим следующие постоянные или переменные силы (законы изменения переменных сил, как правило, устанавливаются опытным путем).
Сила тяжести. Это постоянная сила , действующая на любое тело, находящееся вблизи земной поверхности. Модуль силы тяжести равен весу тела.
Опытом установлено, что под действием силы любое тело при свободном падении на Землю (с небольшой высоты и в безвоздушном пространстве) имеет одно и то же ускорение , называемое ускорением свободного падения, а иногда ускорением силы тяжести (Закон свободного падения тел был открыт Галилеем. Значение q в разных местах земной поверхности различно; оно зависит от географической широты места над уровнем моря. На широте Москвы (на уровне моря) q=9,8156м/с2
Тогда из уравнения (1') следует, что
Р=тq или т=Р/q . (3)
Эти равенства позволяют, зная массу тела, определить его вес (модуль действующей на него силы тяжести) или, зная вес тела, определить его массу. Вес тела или сила тяжести, как и величина q, изменяются с изменением широты и высоты над уровнем моря; масса же является для данного тела величиной неизменной.
Сила трения. Так будем кратко называть силу трения скольжения, действующую (при отсутствии жидкой смазки) на движущееся тело. Ее модуль определяется равенством
F=f*N (4)
где f — коэффициент трения, который будем считать постоянным;
N — нормальная реакция.
Сила тяготения. Это сила, с которой два материальных тела притягиваются друг к другу по закону всемирного тяготения, открытому Ньютоном. Сила тяготения зависит от расстояния и для двух материальных точек с массами и , находящихся на расстоянии r друг от друга, выражается равенством
где f—гравитационная постоянная (в СИ/=6,673*).