Движение в центрально-симметричном поле
Рефераты >> Физика >> Движение в центрально-симметричном поле

Асимптотическое разложение вырожденной гипергеометрической функции позволяет непосредственно получить такое же разложение для волновой функции

(3,21)

Если нормировать волновые функции «по шкале » , то нормировочный коэффициент равен

(3,22)

Действительно, асимптотическое выражение при больших ( первый член разложения (3,21) ) тогда имеет вид

,

(3,23)

в согласии с общим видом нормировочных волновых функций непрерывного спектра в центрально-симметричном поле. Выражение (3,23) отличается от общего вида наличием логарифмического члена в аргументе у синуса; поскольку, однако, растет при увеличении медленно по сравнению с самим , то при вычислении нормировочного интеграла, расходящегося на бесконечности, наличие этого члена не существенно.

Модуль Г-функции, входящий в выражение (3,22) для нормировочного множителя, может быть выражен через элементарные функции. Воспользовавшись известными свойствами Г-функций

, ,

имеем

,

и далее

.

Таким образом,

(3,24)

( при произведение заменяется на 1 ).

Предельным переходом можно получить радиальную функцию для особого случая равной нулю энергии. При

,

где - функция Бесселя. Коэффициенты (3,24) при сводятся к

Отсюда находим

(3,25)

Асимптотический вид этой функции при больших

(3,26)

Множитель исчезает при переходе к нормировке «по шкале энергии», т.е. от функции к функции ; именно функция остается конечной в пределе .

В кулоновом поле отталкивания имеется только непрерывный спектр положительных собственных значений энергии. Уравнение Шредингера в этом поле может быть формально получено из уравнения для поля притяжения изменением знака у . Поэтому волновые функции стационарных состояний получаются непосредственно из (3,18) посредством этой же замены.

Нормировочный коэффициент снова определяется по асимптотическому выражению и в результате получается

,

. (3,27)

Асимптотическое выражение этой функции при больших имеет вид

,

(3,28)

.

Природа кулонова вырождения.

При классическом движении частицы в кулоновом поле имеет место специфический для этого поля закон сохранения; в случае поля притяжения

(3,29)

В квантовой механике этой величине отвечает оператор

(3,30)

коммутативный, как легко проверить, с гамильтонианом .

Прямое вычисление приводит к следующим правилам коммутации для операторов друг с другом и с оператором момента:

, . (3,31)

Некоммутативность операторов друг с другом означает, что величины не могут иметь в квантовой механике одновременно определенных значений. Каждый из этих операторов, скажем , коммутативен с такой же компонентой момента , но некоммутативен с оператором квадрата

момента . Наличие новой сохраняющейся величины, не измеримой одновременно с другими сохраняющимися величинами, , приводит к дополнительному вырождению уровней, - это и есть специфическое для кулонова поля «случайное» вырождение дискретных уровней энергии.

Происхождение этого вырождения можно сформулировать также и в терминах той повышенной симметрии ( по сравнению с симметрией по отношению к пространственным вращениям ), которой обладает кулонова задача в квантовой механике.

Для этого отмечаем, что для состояний дискретного спектра, с фиксированной отрицательной энергией, можно заменить в правой стороне соотношения (3,31) на и ввести вместо операторы . Для них правила коммутации принимают вид


Страница: