Начала систематического курса планиметрии в средней школе
Рефераты >> Педагогика >> Начала систематического курса планиметрии в средней школе

В действующем пособии Погорелова А.В. используется следующее определение равенства треугольников:

“Треугольники называются равными, если у них соответствующие углы равны. При этом соответствующие углы должны лежать против соответствующих сторон”.

3. Методическая схема изучения признаков равенства треугольников

Систематический курс геометрии начнем изучать в 7 классе со знакомства с основными свойствами простейших геометрических фигур, которые сформулированы в виде аксиом.

№ 47, стр.23

АС и ВС пересекаются, т.е. точка В лежит в одной полуплоскости, а точка А – в другой (?)

Точка В1 (АС) и лежит между точками А и С

Точка А1 (ВС) и лежит между точками В и С

Рассмотрим прямую (АА1), тогда точки А и С принадлежат разным полуплоскостям, т. к. отрезки АС и ВС пересекаются. Поэтому точки В и В1 (т.к. В1 лежит между С и А) лежат в разных полуплоскостях и, следовательно, АА1 ВВ1

При решении используется понятие полуплоскости и аксиома IV (см. страница 8)

После изучения §1 учащимся даются понятия: аксиомы, теоремы, приводятся простейшие формы доказательств. (прочитать пункт 13 «аксиомы», страница 19) № 22 § 2, страница 32

Воспользуемся т. 1.1. (стр.17), согласно которой, из того что пересечена одна из сторон ∆ АВС (СА), прямая пересечет еще одну из оставшихся двух.

Рассмотрим ДОА. Если ДОА < АОВ, то луч ОД лежит между лучами АО и ОВ и, следовательно, пересекает отрезок АВ.

Если ДОА > ВОА, то луч ОД пересечет отрезок ВС (это связано

Следующими условиями: ВОА < ДОА и луч ОД лежит между лучами ОС и ОВ.

Методика изучения признаков равенства треугольников.

Изложение вопросов о равенстве треугольников во многом зависит от выбора определения равных треугольников. В учебнике Погорелова А.В. приводится гильбертовское определение равенства треугольников, которое требует выполнения шести равенств: трех для соответственных сторон треугольников и трех для соответственных углов этих треугольников. (смотри определение равенства на стр. 14)

Рассмотрим еще один вариант изложения темы равные треугольники:

1. Для равенства двух треугольников потребуем (по определению) равентсов трех соответствующих сторон этих треугольников;

2. В качестве аксиомы примем следующие утверждения: «Если две стороны и угол, заключенный между ними одного треугольника соответственно равны двум сторонам и углу заключенному между ними, другого треугольника, то такие треугольники равны».

Такой подход позволяет не доказывать третий признак равенства треугольников (это предусмотренно в 1.) и I признаках равенства треугольниках (это аксиома), что приводит к сокращению теоретического материала и упрощению логической структуры темы «Равенство треугольников», позволяет кратчайшим путем ввести один из основных методов традиционно-синтетической геометрии – метод равных треугольников.

Методика изучения первого признака равенства треугольников. Методическая схема по Погорелову А.В.:

1. Построить два треугольника, у которых равны две пары соответствующих сторон и углы, заключенные между ними;

2. На основании полученного рисунка сформулируйте теорему записать ее условие и заключение;

3. Сообщить идею доказательства;

4. Сообщить план доказательства;

5. Провести доказательство с четким выделением его шагов;

6. Осуществить закрепление его доказательства;

7. Рассмотреть с учащимися задачи на примере признака.

Итак, пусть по сторонам В, С и углу А с помощью транспортира и линейки построено два треугольника: ∆ АВС и ∆ А1В1С1

Что можно сказать о ∆ АВС и ∆ А1В1С1 ?

После о том, что эти треугольники равны, формулируем теорему. Выясняем: что дано в этой теореме, а что надо доказать. Рядом с рисунком 1 краткую запись теоремы:

Дано: АВ =А1В1; АС=А1С1; А = А1

Доказать: ∆ АВС = ∆ А1В1С1

Сообщаем ученикам идею доказательства: рассмотреть третий ∆ А1В2С2, который: 1. равен ∆ АВС и расположен таким образом, что 2. его вершина В2 лежит на полупрямой А1В1; 3. вершина С2 находится в той же полуплоскости относительно прямой А1В1, в которой лежит вершина С1.

Теорема будет доказана, если установлено, что ∆ А1В2С2 совпадает с ∆ А1В1С1.

Составляем план доказательства:

1. Рассмотрим ∆ А1В2С2, о котором говорилось выше;

2. Докажем, что вершина В2 совпадает с вершиной В1;

3. Докажем, что луч А1С2 совпадает с лучом А1С1;

4. Докажем, что вершина С2 совпадает с вершиной С1;

5. Сделаем заключение о равенстве ∆ АВС и ∆ А1В1С1.

Приводим краткую запись доказательства на доске (оно выполняется учителем по ходу изложения, записывать доказательство в тетрадях не нужно),

1) ∆ А1В2С2 = ∆ АВС аксиома IV3

2) т.к. А1В1 = А1В2, то В2 совпадает с В1 аксиома IV1

3) т.к. В1А1С1 = В2А1С2, то лучи А1С2 и А1С1 совпадают

аксиома IV2

4) т.к. А1С1 = А1С2, то точки С2 и С1 совпадают аксиома IV1

5) ∆ А1В2С2 и ∆ А1В1С1 совпадают п.п. 2,4

6) ∆ АВС = ∆ А1В1С1 п.п. 5,1

Вопросы для закрепления

1. Как был выбран ∆ А1В2С2?

2. Почему вершина В2 совпадает с вершиной В1 ?

3. Зачем нужно доказывать совпадения лучей А1С2 и А1С1 ?

4. Почему вершина С2 совпадает с вершиной С1 ?

5. Почему делается вывод о равенстве ∆ АВС и ∆ А1В1С1


Страница: