Начала систематического курса планиметрии в средней школе
Рефераты >> Педагогика >> Начала систематического курса планиметрии в средней школе

2) Основные свойства расположения.

2,а) Из трех точек на прямой одна, и только одна, лежит между двумя другими.

2,б) Прямая разбивает плоскость на две полуплоскости. Если концы какого-нибудь отрезка принадлежат одной полуплоскости, то отрезок не пересекается с прямой. Если концы отрезка принадлежат разным полуплоскостям, то отрезок пересекается с прямой.

Методическая схема введения аксиом:

1) ввести аксиому на наглядной основе;

2) сформулировать аксиому;

3) выполнить логический нализ формулировки аксиом;

4) провести математический диктант.

3) Основные свойства измерения отрезков и углов.

3,а) Каждый отрезок имеет определенную длину, большую нуля. Длина отрезка равна сумме длины частей, на которые он разбивается любой своей точкой.

3,б) Каждый угол имеет определённую длину, большую нуля. Развёрнутый угол равен . Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.

4) Основные свойства откладывания отрезков и углов.

4,а) На любой полупрямой от её начальной точки можно отложить отрезок заданной длины, и только один.

4,б) От любой полупрямой в заданную полуплоскость можно отложить угол с заданной градусной мерой, и только один.

4,в) Каковы бы ни были треугольник и полупрямая, существует треугольник, равный данному, у которого первая вершина лежит в начале полупрямой, вторая – на полупрямой, а третья – в заданной полуплоскости относительно полупрямой и её продолжения.

Конкретно-индуктивным методом следует пользоваться лишь при изучении трудных для понимания аксиом. Рассмотрим один из вариантов введения аксиомы 4,в).

Начертим: , полупрямую ; отметим полуплоскость относительно .(полупрямой и её продолжения)

Вопрос: Можно ли построить , равный , который бы распологался следующим образом:

а) вершина совмещалась бы с началом полупрямой ;

б) вершина лежала бы на полупрямой ;

в) вершина лежала бы в заданной полуплоскости относительно полупрямой и её продолжения?

будем “строить” с помощью картонной модели . Построение направляем вопросами:

Что дано?(, полупрямая , полуплоскость); Что требуется построить? Каким четырём условиям должен удовлетворять ? Покажите, как можно построить такой с помощью нашей модели. После построения делаем вывод.

5) Основное свойство параллельных прямых.

Через точку не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной.

Использованная методическая форма приведения аксиом в учебнике Погорелова впервые была дана в учебнике Киселёва, а именно:

Аксиомы формулируются, но без внешнего подчеркивания формально-логического аспекта(они не нумеруются, не сообщаются названия групп). Формально-логический аспект не подчеркивается и в первых доказательствах. Непосредственные ссылки на аксиомы в этих доказательствах не делаются(они подразумеваются и при необходимости в устном изложении на уроке могут быть сделаны). Такому приёму свойственны неформальный стиль изложения и активное обращение к наглядности в первых доказательствах. Ссылки в доказатьльствах появляются после изучения признаков равенства треугольников. Подобная “маскировка” аксиом позволяет на первый план выдвинуть наглядно-геометрическую(содержательную) сторону доказательств, которые при этом тесно связываются с возможными интуитивными рассуждениями учащихся.

В учебнике Погорелова, в отличии от приведенного изложения по Киселёву, предпринята попытка формализации начала курса(чёткое выделение аксиом, ссылок в первых доказательствах)

2. Методика введения понятий и теорем в курсе геометрии

Ряд математических понятий является неопределенным. В учебнике Погорелова к ним отнесены: точка, прямая, точка принадлежащая прямой; “точка В лежит между точками А и С”; “полуплоскость”, “длина отрезка”, “мера угла”, “отложить отрезок(угол) заданной меры”. Свойства неопределяемых понятий описываются аксиомами. Все остальные понятия – определяемые.

Отметим особенности некоторых определений:

1)отрезок определяется таким образом, что концы ему не принадлежат; в связи с этим нельзя использовать обозначение с помощью квадратных скобок; 2) полупрямая определяется т.о., что начальная точка ей не принадлежит; 3) угол определяется так, что вершина угла не принадлежит ему; 4) вершины треугольника (но определённого) принадлежат ему:

“Треугольником называется фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки - сторонами”.

“Углом называется фигура, которая состоит из точки - вершины угла – и двух различных полупрямых, исходящих из этой точки - стороны угла”.

Одним из центральных понятий для всего курса геометрии является понятие равных треугольников. В учебнике Киселёва равенство треугольников определяется с помощью положения. В пособии Погорелова А.В. сразу вводится общие понятия равенства фигур (с помощью перемещения). Определение равенства треугольников, по учебнику Погорелова (первые издания) для школьной практики новые, т.к.

“Треугольники и называются равными, если у них .” Как видно из этого определения, речь идет о равенстве не просто каких-либо двух треугольников, а треугольников, между которыми установлено соответствие: , по этой причине, например, равенство = может выполняться, но для “тех же” треугольников равенство: = может оказаться несправедливым. ”


Страница: