Научно-исследовательская работа школьников в РБ
Рефераты >> Педагогика >> Научно-исследовательская работа школьников в РБ

откуда, преобразовывая, получим

t× ( (x-a1) … (x-ai) - (x-ai+1) … (x-an)) = d× ( (x-a1) … (x-ai) - (x-ai+1) … (x-an)).

Это равенство выполнено для всех x, поэтому можно считать, что

(x-a1) … (x-ai) - (x-ai+1) … (x-an) ¹ 0, и t = d.

Таким образом,

f1 (x) = f2 (x) = t× (x-a1) … (x-ai) +1 = t× (x-ai+1) … (x-an) -1.

Применим к этому равенству обобщенную теорему Виета и рассмотрим свободные члены

(-1) i×t×a1×…×ai+1 = (-1) i×t×ai+1×…×an-1.

Перенесем слагаемые с t влево, без t вправо. Вынесем t за скобки

t× (a1×…×ai - ai+1×…×an) = ±2.

Выражение в скобках - целое число. Поэтому t может принимать только 4 различные значения: ±1 и ±2. Но как показано выше, m = t×t. Следовательно только для двух целых значений m многочлен f (g (x)) приводим. Это m = 1 и m = 4.

Приведем примеры приводимых многочленов для этих m.

(x-1) (x-2) (x-3) (x-4) + 1 = ( (x-1) (x-4) +1) × ( (x-2) (x-3) -1)

Действительно, ( (x-1) (x-4) +1) × ( (x-2) (x-3) -1) = (x-1) (x-2) (x-3) (x-4) - x2+5x - 4 + x2 - 5x+6-1= = (x-1) (x-2) (x-3) (x-4) + 1.

Для m = 4

4x (x-1) +1 = 4x2 - 4x + 1 = (2x-1) (2x-1)

Ответ: f (g (x)) неприводим при всех целых mÏ{1; 4}.

2. Допустим, что m (x-a1) 2… (x-an) 2+1 приводим, тогда

m (x-a1) 2… (x-an) 2+1 = f1 (x) f2 (x).

Как и выше, f1 (x) = f2 (x) =1 либо f1 (x) = f2 (x) = - 1 для всех x из {a1; …; an}. Если f1 (x) принимает значения и 1 и - 1, то в силу непрерывности многочлена, f1 (x) = 0 для некоторого x. Но тогда для этого x выполнено равенство

m (x-a1) 2… (x-an) 2+1 = f1 (x) f2 (x) = 0,

чего быть не может ни при одном натуральном m. Поэтому для определенности будем считать, что f1 (ai) = f2 (ai) =1 для всех i от 1 до n. (В случае, когда, f1 (ai) = f2 (ai) =-1 для всех i от 1 до n доказательство проводится аналогично) Как и в пункте 1, получаем

f1 (x) = t× (x-a1) … (x-an) +1;

f2 (x) = d× (x-a1) … (x-an) +1.

Отсюда,

m (x-a1) 2… (x-an) 2+1 = f1 (x) ×f2 (x) = t×d× (x-a1) 2… (x-an) 2+ (t+d) × (x-a1) … (x-an) +1.

Из равенства многочленов получаем m = t×d и (t+d) × (x-a1) … (x-an) = 0. Последнее равенство выполнено при всех значениях x, поэтому из него следует, что t+d = 0, то есть t = - d. Откуда натуральное m = - t2. Противоречие показывает, что многочлен m (x-a1) 2… (x-an) 2+1 неприводим. Утверждение доказано.

3. Рассмотрим неприводимый многочлен ax2+bx+1. Допустим, дискриминант b2-4a<0, а многочлен a× (x-a1) 2… (x-an) 2 + b× (x-a1) … (x-an) +1 = f1 (x) ×f2 (x) приводим. Как и в пункте 2, учитывая, что при отрицательном дискриминанте многочлен не будет обращаться в 0, получаем:

f1 (x) = t× (x-a1) … (x-an) +1;

f2 (x) = d× (x-a1) … (x-an) +1.

Отсюда,

a× (x-a1) 2… (x-an) 2 + b× (x-a1) … (x-an) +1 =

= f1 (x) ×f2 (x) = t×d× (x-a1) 2… (x-an) 2+ (t+d) × (x-a1) … (x-an) +1.

Из равенства многочленов получаем, что a = t×d и b = t+d. Значит t и d являются корнями уравнения x2 -bx +a = 0. Но согласно предположению дискриминант этого уравнения b2-4a<0. Уравнение не имеет корней. Таким образом допущение не верно и при отрицательном дискриминанте многочлен a× (g (x)) 2+b×g (x) +1 неприводим.

3.2 Пример 2: волнистые числа

Назовем девятизначное число волнистым числом первого типа, если

Например, число 162539581 волнистое число первого типа. Назовем девятизначное число волнистым числом второго типа, если

а) Найдите количество девятизначных волнистых чисел первого и второго типа.

б) Найдите формулу для вычисления количества волнистых п-значных чисел первого и второго типа.

Назовем девятизначное число волнистым числом третьего типа, если

Назовем девятизначное число волнистым числом четвертого типа, если

а) Найдите количество девятизначных волнистых чисел третьего и четвертого типа.

б) Найдите формулу для вычисления количества волнистых п-значных чисел третьего и четвертого типа.

Предложите свои обобщения этой задачи и исследуйте их.

Решение

Лемма 1. Обозначим через f (n,k1,k2) - количество n-значных волнистых чисел первого типа, начинающихся с цифры k1 и заканчивающиеся на цифру k2, g (n,k1,k2) - количество n-значных волнистых чисел второго типа, начинающихся с цифры k1 и заканчивающиеся на цифру k2. Тогда

и

Также, и

Доказательство. Рассмотрим n-значные волнистые числа первого типа.

Нетрудно заметить, как они получаются. Берутся все n-1-значные волнистые числа и, в зависимости от текущего знака (“<" или ”>”), дописывается каждому числу цифра, меньшая или большая последней, т.е. чтобы найти количество n-значных волнистых чисел, заканчивающихся на k, надо найти сумму всех количеств n-1-значных чисел заканчивающихся на цифры от 0 до k-1 или от k+1 до 9.Т. к. на каждом шаге мы корректно вычисляем волнистые числа, то нет необходимости знать всё число: все зависит от последней цифры.

Следовательно, можно составить рекуррентную формулу, которая будет корректно вычислять количество n-значных волнистых чисел первого типа начинающихся на цифру k1 и заканчивающихся на цифру k2.

Рассмотрим рекуррентную формулу для волнистых чисел первого типа.

Начальные её значения , т.е. есть только по одному однозначному волнистому числу, начинающемуся на i и заканчивающемуся на i ().

Пусть , тогда по четности/нечетности i () определяем текущий знак “<” или “>”:

Если i-нечетное, то является суммой всех количеств i-1-значные волнистых чисел первого типа, которые начинаются на k1 и у которых последняя цифра меньше k2.


Страница: