Научно-исследовательская работа школьников в РБРефераты >> Педагогика >> Научно-исследовательская работа школьников в РБ
Сравнивая молодую женщину с цветком, поэты ощущают, я надеюсь, некоторое сходство, но обычно они не имеют в виду аналогии. Действительно, они едва ли намериваются покинуть мир эмоций и свести это сравнение к чему-то измеримому или определимому с помощью понятий.
Рассматривая в музее естественной истории скелеты различных млекопитающих, вы можете обнаружить, что все они страшны. Если в этом все сходство, которое вы между ними обнаружили, то вы видите не такую уж сильную аналогию. Однако вы можете подметить удивительно много говорящую аналогию, если рассмотрите руку человека, лапу кошки, переднюю ногу лошади, плавник кита и крыло летучей мыши - эти столь различно используемые органы, как состоящие из сходных частей, имеющих сходное отношение друг к другу.
Аналогия есть умозаключение о принадлежности единичному явлению определенного признака на основе сходства этого явления в существенных признаках с другим уже известным единичным явлением. Она рассматривается в качестве разновидности индукции.
Приведем следующий пример умозаключения по аналогии: Для существования живых существ необходимы вода, воздух, соответствующая температура и т.д. На Марсе есть вода, воздух, соответствующая температура и т.д. Следовательно, на Марсе, возможно, существуют живые существа. Поскольку в данном силлогизме содержится ошибка, заключающаяся в том, что среднее понятие не распределено (ложность нераспределенного среднего термина), ценность заключения находится на уровне вероятности. Однако если среднее понятие будет распределенным (то есть, если будут установлены все условия, необходимые для существования живых существ), то и заключение станет определенным.
Другими словами, аналогия - это подобие, сходство предметов или явлений в каких-либо свойствах, признаках, отношениях, причем сами эти предметы, вообще говоря, различны. В математике часто рассматривают умозаключение по аналогии, сходству отдельных свойств (признаков) при сравнении двух множеств (фигур, отношений, объектов и т.д.).
Аналогия весьма доступна и проста как прием рассуждения, но она в первую очередь позволяет выдвинуть гипотезу, которую потом требуется строго доказать.
2.4 Специализация
Специализация есть переход от рассмотрения данного множества предметов к рассмотрению меньшего множества, содержащегося в данном.
Например, мы специализируем, когда переходим от рассмотрения многоугольников к рассмотрению правильных многоугольников, п специализируем еще дальше, когда переходим от правильных многоугольников с п сторонами к правильному, т.е. равностороннему треугольнику.
Эти два последовательных перехода осуществлялись в двух характерно различных направлениях. В первом переходе, от многоугольников к правильным многоугольникам, мы ввели ограничение, именно потребовали, чтобы все стороны и все углы многоугольника были равны. Во втором переходе мы заменили переменный предмет конкретным, поставили 3 вместо переменного целого числа п.
Очень часто мы производим специализацию, переходя от целого класса предметов к одному предмету, содержащемуся в этом классе. Например, когда мы хотим проверить некоторое общее утверждение относительно простых чисел, мы выбираем какое-нибудь простое число, скажем 17, и исследуем, справедливо ли это общее утверждение или нет именно для этого числа 17.
3. Пример задачи исследовательского характера для школьников
3.1 Пример 1: неприводимые многочлены
Многочлен h (x) с целыми коэффициентами положительной степени называется неприводимым, если он не представим в виде произведения двух многочленов положительных степеней с целыми коэффициентами.
Пусть g (x) = (x-a1) … (x-an), где a1,…,an - различные целые числа.
Пусть f (x) =mx+1, где m - целое число. Найдите все значения m, для которых многочлен f (g (x)) неприводим.
Пусть f (x) =mx2+1, где m - натуральное число. Докажите, что многочлен f (g (x)) неприводим.
Исследуйте неприводимость многочленов вида f (g (x)) для других неприводимых многочленов f (x) (например, для неприводимых квадратичных многочленов ax2+bx+1).
Решение.
1. Предположим, что многочлен f (g (x)) приводим, то есть для некоторых двух многочленов f1 (x) и f2 (x) положительной степени с целыми коэффициентами
m (x-a1) … (x-an) +1 = f1 (x) f2 (x).
Это верно для всех x, в том числе и для x=a1, …, x=an. Получаем,
f1 (a1) f2 (a1) =1,…,
f1 (an) f2 (an) =1.
Рассмотрим первое из этих равенств. Оно возможно для целого a1 и многочленов f1 (x), f2 (x) с целыми коэффициентами только если f1 (a1) =f2 (a1) =1 или f1 (a1) =f2 (a1) =-1. Аналогично и для остальных равенств. Пусть в i случаях будет 1, в j будет - 1. Тогда i+j=n.
Покажем, что n - четное и i = j =. Допустим, что i>(т.е. j=n-i<). Тогда многочлены f1 (x) - 1 и f2 (x) - 1 имеют не менее i корней, а, следовательно, их степень больше . Поэтому и степени многочленов f1 (x) и f2 (x) соответственно больше . Таким образом степень f1 (x) f2 (x) = m (x-a1) … (x-an) +1 больше n. Противоречие показывает, что допущенное не верно. Аналогично, j не больше .
Два числа не превосходящие в сумме дают n. Значит, i = j = и n - четное число. При этом степени f1 (x) и f2 (x) также равны i=, иначе, рассуждая как и выше, получим противоречие.
Не ограничивая общности, можно считать, что f1 (a1) =…=f1 (ai) =1, f1 (ai+1) =…=f1 (an) =-1. (При перестановке местами ak и al условие задачи не изменится, поэтому можно считать, что изначально их порядок такой, что f1 (x) обращается в 1 в первых i). Тогда f1 (x) = t1× (x-a1) … … (x-ai) +1 = t2× (x-ai+1) … (x-an) -1. Аналогично, f2 (x) = d1× (x-a1) … (x-ai) +1 = d2× (x-ai+1) … (x-an) -1.
Рассмотрим равенства
m (x-a1) … (x-an) +1 = f1 (x) f2 (x) = (t1× (x-a1) … (x-ai) +1) × (d1× (x-a1) … (x-ai) +1);
m (x-a1) … (x-an) +1 = f1 (x) f2 (x) = (t1× (x-a1) … (x-ai) +1) × (d2× (x-ai+1) … (x-an) -1).
Приравнивая коэффициенты при старшей степени (xn) левой и правой части, получаем m = t1d1 и m = t1d2. Отсюда d1 = d2. Аналогично получаем, что t1 = t2. Таким образом, получаем, что m = t×d для некоторых целых t и d, причем:
f1 (x) = t× (x-a1) … (x-ai) +1 = t× (x-ai+1) … (x-an) -1
f2 (x) = d× (x-a1) … (x-ai) +1 = d× (x-ai+1) … (x-an) -1.
Вычтем из первого равенства второе
t× (x-a1) … (x-ai) - d× (x-a1) … (x-ai) = t× (x-ai+1) … (x-an) - d× (x-ai+1) … (x-an),