Методы формирования понятия числа у младших школьников
Рефераты >> Педагогика >> Методы формирования понятия числа у младших школьников

Ориентируясь на эту страницу, можно составить различные варианты уроков, а я хочу предложить свой вариант.

Сначала мы попросили учеников назвать числа, которые им известны. Предлагая такое задание, я не исключала возможности, что дети назовут и числа больше 10. Но, видимо, потому, что на уроках эти числа еще не рассматривались, ученики назвали только числа от 1 до 9. Поэтому свою беседу построила так:

- Сегодня мы познакомимся еще с одним числом и цифрой (знаком), которой это число записывается (обозначается). Как вы думаете, какое это число? (10,0).

Посмотрите, кто из вас прав? (Зажигаю на электротабло 8 огоньков.)

Какой цифрой обозначим число огоньков? (Ученики выставляют на фланелеграфе карточку с цифрой 8).

Гашу на табло 2 огонька.

Что изменилось на табло? (Огоньков стало на 2 меньше, огоньков стало 6.)

Поставим на фланелеграф цифру, которой обозначается это число.

Гашу еще 2 огонька, затем еще 2. Дети выставляют цифры 4 и 2. На фланелеграфе ряд чисел: 8, 6, 4, 2. Гашу последние 2 огонька.

А теперь, что вы видите на табло? (Нет ни одного огонька, нет ничего, табло пустое.)

А может кто-нибудь знает, каким знаком в математике можно обозначить то, что на табло нет ни одного огонька? Дети выставляют на фланелеграфе карточку с цифрой 0.

Верно, этим знаком записывается число нуль.

Цифра вроде буквы «О» —

Это ноль иль ничего.

Этот ноль такой хорошенький,

Но не значит ничегошеньки.

Такой цифрой (знаком) 0 впервые стали обозначать в Индии, а его название возникло от латинского слова nullum, что в переводе на русский обозначает ни одного, нисколько.

А кто может сказать, по какому правилу записан на доске ряд чисел: 8, 6, 4, 2, 0? (Числа уменьшаются; числа уменьшаются на 2.)

-Давайте поучимся красиво писать цифру 0.

На доске даю образец записи, объясняю, как писать эту цифру. Вызываю к доске детей, и они сами пробуют написать цифру 0. Каждый раз обсуждаем, что получилось хорошо, а что не удается, кто написал цифру 0 правильно. Дети пишут цифру «в воздухе», потом в тетрадях.

-Итак, мы научились писать цифру 0. А теперь хотите познакомиться с тайнами этого числа? (Да, да.)

Послушайте стихотворение:

Повезло опять Егорке:

У реки сидит не зря —

Два карасика в ведерке

И четыре пескаря.

Но смотрите, у ведерка

Появился хитрый кот.

Сколько рыб теперь Егорка

На уху нам принесет?

-Кто хочет на фланелеграфе изобразить картинку к этому стихотворению?

На фланелеграфе прикрепляется ведерко, в него помещается сначала 2 карася, затем 4 пескаря.

- Запишите в тетради равенство, которое соответствует этому действию. Дети записывают самостоятельно: 2+4=6.

- Что случилось потом? Кто будет хитрым котом? Выходи и покажи, как изменится наша картинка.

Ученик выходит к доске и снимает 6 рыбок.

- А каким равенством надо записать это действие?

Дети самостоятельно записывают в тетрадях: 6—6=0. Пока они пишут, я возвращаю рыбок на фланелеграф (в ведерко).

- Посмотрите, в ведре опять 6 рыбок. Закройте глаза, я что-то изменю на картинке. Убираю 1 рыбку. Каким равенством запишем то, что я сделала? (6—1=5.)

Повторяю задание, убираю еще одну рыбку. В тетрадях дети записывают: 5—1=4.

Опять предлагаю закрыть глаза и ничего не меняю на картинке.

- Откройте глаза. Что изменилось? (Ничего.)

- Догадайтесь, как можно это записать равенством?

Дети предлагают: 4—0=4, 4+0=4.

- Что показывает эта запись? (Ни одной рыбки не убрали, ни одной рыбки не добавили.)

- Откройте учебник.

Ученик читает задание и объясняет, что на первой картинке слева 4 круга, а справа 6, кругов стало больше на 2, значит, этой паре картинок подходит равенство 4+2=6.

Аналогично обсуждаются все пары картинок. Интересно, что и картинке (вторая во втором ряду), на которой изображено по четыре кружка, подходят два равенства: 4+0=4 и 4—0=4.

Естественно, дети пытаются найти и к следующей картинке тоже два равенства, но дано только одно 7—0=7. Тогда они сами предлагают другое 7+0=7. Некоторые говорят, что одно равенство записано неверно (7+0=4), и, если вместо 4 написать 7, то это равенство подойдет к последней паре картинок.

Меня радует, что дети дают такие ответы. Это показатель того, что они анализируют рисунки и осмысленно соотносят с ними числовые равенства.

- А если рассматривать изменения в каждой паре картинок не слева направо, как это дано в учебнике, а справа налево, то какие равенства можно записать к каждой паре?

Предлагаю сделать это самостоятельно, кто сколько успеет за 5 минут.

После этого дети легко находят место нуля на числовом луче, и мы выясняем, что в этом случае обозначает число «0» (не отложили ни одной мерки, начало луча).

Определив место нуля на числовом луче, мы выполняем задание № 106. Дети самостоятельно записывают в тетрадях равенства: 0+5=5, 3—3=0, 0+6=6, 9—9=0.

При проверке они читают равенства используя (кто может) математические термины (слагаемое, значение суммы) и поясни ют, что обозначает каждое число в равенстве на числовом луче.

Затем они на числовых лучах находят значения выражений:

0+3+2 /луч а/

0+4+2 /луч в/

9—7—2 /луч г/

Дети накладывают на страницу учебник прозрачную пленку и выполняют задание. Выясняем, какие изменения они внесли на каждом лучевом числе.

Наконец, предлагаем последнее задание. Его нет в учебнике, но мне хочется проверить, догадаются ли наши ученики, как изобразить на числовом луче такие равенства: 3—0=3, 5+0=5.

Задание выполняется самостоятельно, в индивидуальных карточках. Справляются все.

Подводим итог:

- С какими тайнами нуля мы познакомились сегодня на уроке? (К числу прибавляем нуль, получаем это число; из числа вы читаем нуль, получаем это же число; если и трех вычесть 3, то получим нуль; если и любого числа вычесть это же число, получи нуль).

-А если к нулю прибавить нуль? А ее ли из нуля вычесть нуль?

Так кто же был прав, с каким числом и с какой цифрой мы познакомились сегодня на уроке?

Урок принес большое удовлетворение детям, а это очень важно для дальнейшего поиска и творчества.

2.2 Исследования и анализ формирования понятия числа у младших школьников

В методических пособиях по обучению математике указания, касающиеся счета в пределах первого десятка, начинается с того, что надо обеспечить наглядный процесс образования группы предметов или восприятия числа. Затем рекомендуется переходить к письму цифр, изучение состава числа и после этого – к сложению и вычитанию. Но отсутствует необходимость выяснения того, какого значение числа и счета.

Поскольку осознанность операций, выполняемых детьми играет большую роль в развитии, следует уже в самом начале привлечь внимание детей к пониманию числа и счета.

Во время прохождения государственной практики Атиковской средней общеобразовательной школе Бурзянского района провела интервьюривание учителем начальных классов с Розалией Рахимовной на базе третьего класса (Приложение 1).


Страница: