Методы формирования понятия числа у младших школьников
Рефераты >> Педагогика >> Методы формирования понятия числа у младших школьников

Не было еще случая, чтобы дети не догадались, что для обозначения одинакового количества целесообразно использовать одинаковые обозначения.

- Почему по этим обозначениям можно сразу же догадаться, что предметов поровну?

Затем они демонстрируют еще одну группу предметов, подобранную им так, что предметов в этой группе столько же, сколько их в каждой из ранее рассмотренных.

Нам известно, что из этих предметов столько же, сколько и этих (показывает на одну из ранее рассмотренных групп). Кто не верит, может проверить, составив пары. Обозначьте их количество словом, рисунком, знаком так, чтобы сразу было ясно, что их столько же, сколько и этих предметов (показывает на одну из ранее рассмотренных групп).

Объясните, почему вы обозначили так? (Если количество этих предметов обозначено так то и количество этих предметов, поскольку их столько же, обозначу тем же словом, знаком, рисунком, буквой.)

- А теперь сосчитайте (посчитаем вместе) количество отдельных предметов в каждой группе. . Как принято в математике обозначать это количество? (Словами — числительными, знаком — соответствующей цифрой или цифрами, рисунком, например точечным).

- Значит, придуманные нами слова, знаки — это «заменители» названий, обозначений чисел. И мы могли бы ими пользоваться точно так же, как соответствующим названием и обозначением числа. (Например: вместо слова «семь» и цифры «7» мы могли бы говорить «блям» и писать «я».) И все было бы хорошо. Правда, нас не поняли бы те, кто не был на сегодняшнем нашем уроке.

Рассмотрение разных способов обозначения результатов количественного сравнения (в том числе и приводящего к появлению числа), их сопоставление, обсуждение достоинств и недостатков, обнаружение этих достоинств и недостатков при попытках использовать придуманные детьми обозначения чисел создают ту атмосферу осознания единства и различий смысла и знака, означаемого и означающего, которая в дальнейшем позволяет обсуждать и другие проблемы познания, проблемы хранения и передачи знания одним человеком другому, одним поколением другому.

1.3 Методика изучения числа в пределах 10

Выделение темы «Десяток» в особый концентр объясняется рядом причин.

Нумерация и арифметические действия в пределах 10 имеют некоторые особенности. Десять - основание десятичной системы счисления, поэтому числа от 1 до 10 образуется в результате счета простых единиц (без использования других разрядных единиц). Для обозначения каждого из чисел первого десятка применяется в устной речи особое слово, а на письме – особый знак.

Арифметические действия (сложение и вычитание) непосредственно связаны с операциями над множествами. Случаи сложения и вычитания в пределах 10 являются табличными, они заучиваются наизусть.

Небольшие числа создают хорошие условия для раскрытия учащимися математических понятий. Опираясь на имеющийся у детей опыт, а также используя практические действия с предметами, можно сформировать такие понятия, как натуральное число, равенство и неравенство чисел.

В теме «Десяток» начинается изучение многих вопросов, работа над которыми продолжается в последующих концентрах. Так, счет в пределах 10 – основа овладения счетом вообще, потому что другие разрядные единицы (десятки, сотни и т.д.) считают точно так же, как и простые единицы. Названия и обозначения чисел первого десятка служат исходными для называния и обозначения любых многозначных чисел. Сложение и вычитание в пределах 10 составляют основу выполнения устных и письменных вычислений за пределами первого десятка.

В подготовительный период учителю надо выявить запас математических знаний и умений у детей, поступивших в школу, и подготовит их к работе над первой темой программы – нумерацией чисел в пределах 10.

Важно на этом этапе установить, умеет ли ребенок считать предметы и в каких пределах, понимает ли смысл терминов « больше», «меньше», «столько же» (одинаково, поровну», каков у него запас пространственных представлений (т. е. в какой мере он владеет понятиями (слева-справа», «вверху-внизу», «впереди-позади», «перед-после-между» и др.).

В непринужденной беседе (желательно до начала обучения в (желательно до начала обучения в 1 классе) учитель предлагает ребенку выполнить несколько заданий, чтобы выяснить, каков запас знаний и умений у ученика. Задания могут быть примерно такими:

Умеешь ли ты считать? Сосчитай эти картинки. Сколько здесь картинок? (10 – 15штук).

Возьми в левую руку столько же карандашей, сколько их лежит на столе (4 – 7 штук).

Узнай, каких кружков больше: синих или красных (6 больших красных и 7 маленьких синих).

Посмотри на картину (к сказке «Репка») и скажи, кто стоит перед жучкой, после кошки, между внучкой и кошкой.

В том случае, когда ученик успешно справляется с этими заданиями, можно предложить ему один-два вопроса по материалу, который предстоит изучать (примеры или задачи на сложение и вычитание в пределах 10, задания на различение и называние геометрических фигур, на узнавание цифр и др.).

Полученные сведения полезно записать в таблицу так, чтобы впоследствии учитель мог использовать их на уроках, проводя индивидуальную работу с детьми.

В подготовительный период и далее при изучении нумерации чисел у детей можно постепенно формироваться понятие чисел, т.е. они должны усвоить разные способы получения (образования) чисел: в процессе счета, измерения, а также путем выполнения арифметических действий. Прежде всего важно отработать умение считать, поэтому упражнения в счете предметов включаются на каждом уроке подготовительного периода. Дети считают предметы окружающий обстановки; предметные картинки, выставленные на наборном полотне; предметы, изображенные на картинках в учебнике, а также палочки, кружки, треугольники и др. Этот материал удобно хранить в арифметических кассах или в самодельных пеналах, изготовленных из спичечных коробок.

Упражняясь в счете, учащиеся с помощью учителя должны установить, что при счете нельзя пропускать предметы или сосчитывать один и тот же предмет несколько раз. К такому выводу они подойдут сами, сопоставляя правильный и неправильный счет предметов.

Считая предметы в различном порядке, учащиеся своими словами формулируют вывод о том, что результат счета не зависит от порядка счета. Например, один ученик считает предметы, расположенные в ряд, слева направо, а другой – справа налево. Учащиеся убеждаются, что считали по-разному, а получилось одно и то же число. Аналогично выполняются другие упражнения, например счет сверху вниз и снизу вверх ступенек лестницы, этажей в доме и т.п.

Надо научить детей пользоваться при счете как количественными, так и порядковыми числительными, предлагая упражнения: «Считай так: один, два, три…» или «Считай так: первый, второй, третий…». Учащиеся постепенно должны усвоить, что если последний предмет оказался пятым при счете, то всего предметов пять, и, наоборот, если всего предметов пять, то последний предмет пятый, но вместе с тем «пятый» - это только один предмет.


Страница: