Методика изучения объемов многогранников в курсе стереометрииРефераты >> Педагогика >> Методика изучения объемов многогранников в курсе стереометрии
Докажите, что если боковые ребра пирамиды равны (или составляют равные углы с плоскостью основания), то вершина пирамиды проецируется в центр окружности, описанной около основания пирамиды (рис. 6). Какие многоугольники могут быть основанием таких пирамид?
|
На третьем уроке выводится формула объема усеченной пирамиды как следствие теоремы об объеме пирамиды. В учебнике [7] предлагается вывести эту формулу самостоятельно.
В конце данного урока проводится самостоятельная работа по учебнику [7] контролирующего характера (на 6-8 мин):
Вариант I: задача № 686 (а) для l = 10 см, = 300.
Вариант II: задача № 688(а) для Н = 10 см, = 600.
Можно провести практическую работу (учитывается как контрольная). Учитель заранее подготавливает модели правильных пирамид (4-6) для работы в классе. Модели, покупные или изготовленные учащимися, перенумеровываются и раздаются по одной. Учащийся не получает ту модель, которую он сам изготовил. Учитель имеет готовые ответы. Измерения производятся в см или в мм.
Указания даются устно:
1) Вместо буквы n поставить цифры 4 или 6.
2) Выполнить все необходимые измерения, сделать чертеж, заполнить таблицу.
3) Выражение для вычисления площади основания Q записать.
4) Все вычисления записывать в таблицу.
Модель №……… Правильная n-угольная пирамида | |
Сторона основания………………………… Периметр основания………………………. Площадь основания……………………… Апофема пирамиды……………………… Площадь боковой поверхности…………… Площадь полной поверхности……………. Высота пирамиды…………………………. Объем пирамиды………………………… |
а (см) Р (см) Q (см) А (см) Sбок (см2) S (см2) Н (см) V (см3) |
Дополнительное задание (подготавливается учителем на карточках и предлагается учащимся):
1. По развертке, данной в масштабе, вычислить действительные площадь полной поверхности и объем: 1) правильной призмы (рис. 8); 2) правильной пирамиды (рис. 9)
2.
|
|
Указание: при выполнении в тетради чертежей пирамиды и призмы учащийся может взять произвольные размеры основных элементов.
3. Вычислить объем башни, размеры которой в метрах даны на рисунке 10.
Вывод формулы объема пирамиды в учебнике [7] рассматривается в два этапа (Приложение 7). Вначале автор предлагает рассмотреть для треугольной пирамиды, а затем – для произвольной. Автор проводит ось, рассматривает сечение плоскостью, выражает площадь сечения через площадь основания, применяет основную формулу для вычисления объемов (определенный интеграл). В доказательстве автор также использует признаки подобия. Таким образом, хорошо прослеживается связь с ранее уже изученным.
Следствием теоремы, в отличие от [8], является формула объема для усеченной пирамиды. Доказательства в данном учебнике не приведено. В учебнике [7] формулировка формулы приведена, как задача, причем автор сам задачу решает.
Мы рассмотрели основные рекомендации для изучения данной темы, которые описаны в соответствующей литературе. Но есть и другие приемы и методы, которыми практически не пользуются, но они имеют свои преимущества. Далее приведена примерная (авторская) система данных уроков.
|
Дело в том, что объемы тел – тема, вызывающая достаточно большие трудности у учащихся. В этом разделе есть четыре трудных для усвоения теоремы: 1) об объеме прямоугольного параллелепипеда; 2) об объеме пирамиды; 3) об объеме цилиндра; 4) об объеме тела, полученного вращением криволинейной трапеции [21].
Выводы формул для вычисления объема каждого вида многогранника, цилиндра, конуса проводятся разными методами, что вызывает значительные трудности при их воспроизведении.
Предлагаемая мною система изучения этого раздела устраняет недостатки и создает условия для усвоения основной идеи измерения фигур в пространстве: объем фигуры может быть найден с помощью вычисления интеграла от определенным образом заданной функции.
С целью осуществления такого подхода к измерениям пространственных фигур предлагается посвятить несколько уроков обобщению изученного ранее материала об измерении отрезков и плоских фигур (о длинах и площадях) и ввести аналогичным образом измерение пространственных фигур. Рассмотрим их содержание более подробно.
Урок 1
Тема урока: обобщение свойства длин отрезков и площадей плоских фигур.
Цель урока: повторить свойства длин отрезков и площадей фигур, провести необходимые аналогии.
В начале урока необходимо повторить таблицу метрической системы мер длины, площади и объемов. Для этого удобно заготовить такую таблицу заранее (если ее нет в кабинете) и вывесить ее перед учениками (Приложение 4).
Упражнения для повторения свойств площадей фигур:
1. На рис. 11 изображен отрезок АВ. Найдите длину отрезка АВ, считая единицей измерения: а) сторону одной клетки; б) 1 см (отрезок CD); в) отрезок EF.
При решении этой задачи следует акцентировать внимание учащихся на том, что длина одного и того же отрезка может выражаться разными числами в зависимости от выбора единицы измерения. Но если единица измерения уже выбрана, то длина отрезка есть единственное число. При этом длина отрезка всегда положительна.