Комплекс упражнений, направленных на формирование представлений о функциональной зависимости у младших школьниковРефераты >> Педагогика >> Комплекс упражнений, направленных на формирование представлений о функциональной зависимости у младших школьников
Третий этап развития русской школы начался в 20-е гг. двадцатого столетия. Анализ методической литературы советского периода показал, что введение понятия функции в школьный курс математики сопровождалось бурными дискуссиями, и позволил нам выделить четыре основных проблемы, вокруг которых существовали расхождения во мнениях методистов, а именно: 1) цель и значение изучения понятия функции учащимися; 2) подходы к определению функции; 3) вопрос функциональной пропедевтики; 4) место и объем функционального материала в курсе школьной математики начальной школы.
Первые послереволюционные программы, составленные в 1918-1921гг., отражали стремление их авторов к коренному преобразованию школьного курса математики начальной школы. При их разработке были учтены основные достижения передовой педагогической мысли того времени: курс математики строился на основе понятия функции. Авторы программ считали, что все включенное в программу "должно быть проработано основательно, главным образом, в направлении развития функционального мышления, при этом идейной и практической стороне должно отдать предпочтение перед формальной" [11, с.380].
Анализ программ позволил выделить их положительные и отрицательные стороны. Главное достоинство, на наш взгляд, - это разделение вопросов о трактовке понятия функциональной зависимости и способах задания функции. Общим недостатком была перегруженность их в той' или иной степени учебным материалом, который, к тому же, был распределен по годам обучения без учета возрастных особенностей учащихся. Как следствие, на практике не удалось в полном объеме выполнить предъявленные данными программами требования.
Не исправили положение программы на основе "комплексного" метода, суть которого состояла в том, что взамен систематического изложения школьного курса математики начальной школы, опирающегося на внутреннюю логику предмета, преподавание строилось в соответствии с последовательностью, содержанием и основными идеями комплексных схем. Известный советский методист Н.Н. Никитин указывал на утилитарность комплексных программ и методических указаний к ним, приведшую к снижению уровня математической подготовки учащихся. "Учащиеся получали поверхностное, случайное знакомство со многими вопросами из математики, но по-настоящему прочно и сознательно знать ничего не могли" [37, с.115].
Итак, данный этап, полностью обусловленный политической и экономической нестабильной ситуацией в России 20-х гг., характеризуется разногласием в действиях методистов, их стремлением к отказу от достижений в области отечественной методики преподавания математики. Разногласия методистов в решении проблем, связанных с определением цели и значения изучения функции учащимися, места и объема функционального материала в курсе школьной математики, а также отсутствие единого мнения по вопросу функциональной пропедевтики привели к ухудшению качества знаний учащихся.
Кризисная ситуация в области преподавания математики вызвала необходимость пересмотра и проверки методов школьной работы.
Четвертый этап обусловлен переводом экономики РСФСР на плановую основу.
В 1931-34 годы была предпринята попытка перехода школьного образования на позиции систематического и прочного усвоения наук. В данный период срок обучения в школе был увеличен до десяти лет, основной формой работы в школе был утвержден урок, была восстановлена роль учебника как основного руководства для ученика, с систематическим изложением основ наук и полным охватом содержания программы по предмету.
Формирование представления о функции, прежде всего как об аналитическом выражении, ученые расценивают как проявление формализма в преподавании, для которого "характерно неправомерное доминирование в сознании и памяти учащихся привычного внешнего (словесного, символического или образного) выражения математического факта над содержанием этого факта" [21, с.46].
Они считали, что в начальной школе понятие функции необходимо изучать на основе понятия соответствия. Для нашего исследования важным является подход А.Я. Хинчина к разработке системы упражнений, способствующих усвоению понятия функции. Он указывал, что традиционные примеры, рассматриваемые непосредственно после введения понятия функции, способны разрушить положительный эффект определения и привить учащимся мысль, что формальное определение само по себе, а в действительности функция есть просто формула. По его мнению, уже среди первых примеров функциональной зависимости наряду с традиционными алгебраическими и геометрическими соотношениями необходимо рассматривать и функции, заданные без использования формулы.
Данный период характеризуется недостаточностью времени на изучение функций, непродуманностью систем упражнений, непониманием учащимися истинной сущности понятия функции, низким уровнем функциональных и графических навыков выпускников школ.
Таким образом, вновь возникла потребность в реформировании преподавания математики в начальной школе. Перестройка всей школьной математики на основе теоретико-множественного подхода ознаменовала пятый этап развития идеи функциональной зависимости. Идея, теоретико-множественного подхода была предпринята группой французских ученых, объединившихся под псевдонимом Николя Бурбаки. В г. Роймоне (Франция, 1959 г.) состоялось международное совещание, на котором было провозглашено свержение всех обычных курсов. В центре внимания оказались структуры и объединения всей школьной математики на базе теории множеств [25, с.174].
Важную роль в развитии идей реформы сыграли статьи В.Л. Гончарова, в которых автор указывал на важность ранней и длительной функциональной пропедевтики, предлагал использовать упражнения, заключающиеся в выполнении ряда заранее указанных числовых подстановок в одном и том же заданном буквенном выражении. Эти упражнения, наряду с совершенствованием вычислительных навыков, могли бы служить и идеям функциональной пропедевтики. Ученый особое внимание отводил построению графика функции, заданной использованным для вычислений буквенным выражением. Особую целесообразность он видел в том, "чтобы две капитальной важности и высокой трудоемкости проблемы — сообщения учащимся прочных навыков арифметических вычислений и пропедевтическое ознакомление их с идеей функции могли быть разрешаемы совместно" [22, с.153].
Таким образом, стабилизация программ и учебников создала почву для возникновения положительных сдвигов в качестве функциональных знаний учащихся. В конце шестидесятых - начале семидесятых, наряду с отрицательными отзывами, в печати стали появляться и такие, в которых отмечалось определенное улучшение знаний школьников о функциях и графиках. Однако общий уровень математического развития учащихся в целом оставался недостаточным. В школьном курсе математики по-прежнему неоправданно много времени отводится формальной подготовке и не уделяется должного внимания формированию представлений младших школьников о функциональной зависимости.
Виды упражнений, направленных на формирование представлений о функциональной зависимости у младших школьников мы рассмотрим в следующем параграфе.