Волоконно-оптические гироскопы
Рефераты >> Технология >> Волоконно-оптические гироскопы

Факторы, ограничивающие разрешающую способность

Рис. 8. Основные шумовые факторы в чувствительном кольце из оптического волокна

Среди факторов, ограничивающих кратковременную разрешающую способность, наиболее сильное влияние оказывает обратное рассеяние по оптическому пути. Свет отражения Френеля от поверхностей элементов оптической системы или свет обратного рассеяния Рэлея, например, в самом оптическом волокне интерферирует со светом сигнала, что приводит к возникновению множества шумов. Для борьбы с ними предлагаются модуляция фазы световой волны, импульсные методы, а также метод, при котором используется источник света с широким спектром и низкой когерентностью, ухудшающий интерференцию из-за большой разности длины оптического пути для света обратного рассеяния Рэлея и света сигнала. (Таким источником может служить многомодовый полупроводниковый лазер или суперлюми­несцентный диод.)

Шумы выходного сигнала гироскопа можно выразить следующей формулой:

Рис. 9. Уменьшение шумов рэлеевского рассеяния посредством расширения спектра светового источника

(10)

где a0 — потери рассеяния Рэлея в оптическом волокне; bR — доля светового рассеяния Рэлея, распространяющаяся в обрат­ном направлении; Dfs — ширина спектра источника света.

На рис. 9 представлены результаты эксперимента, пока­зывающие, как по мере расширения спектра излучения повы­шается разрешающая способность волоконно-оптического гироскопа. Таким образом, в волоконно-оптических гироскопах уменьшение когерентности источника света эффективно для снижения не только шумов расстояния Рэлея, но и шумов эффекта Керра.

Характеристики и методы их улучшения

В настоящее время разработаны экспериментальные системы, в которых приняты меры по повышению чувствитель­ности и по снижению шумов. В этих системах, работающих по методу фазовой модуляции, изменения частоты и светового ге­теродинирования, достигнута разрешающая способность, позво­ляющая измерять скорости, равные или меньшие скорости соб­ственного вращения Земли (15°/ч=7,3×10-5 рад/с). Особенно велики достижения в системах с фазовой модуляцией, у кото­рых разрешающая способность и дрейф примерно 0,02°/ч, что приемлемо для инерциальной навигации.

Исследуется возможность реализации гироскопов с использованием технологии микрооптики, функциональных волоконных и волноводных элементов. Уже выпускаются волоконно-оптические гироскопы с разрешающей способностью 1°/ч. Кроме того, углубляется изучение систем, пригодных для инерциальной навигации.

Система с фазовой модуляцией

Рис. 10. Волоконно-оптический гироскоп с фазовой модуляцией, выполненный на волоконных функциональных элементах

На рис. 10 представ­лена оптическая система гироскопа, разработанная в Стаффордском университете, на одномодовом оптическом волокне, подвергнутом в некоторых местах специальной обработке, а именно: регулятор поляризационного типа, направленный ответвитель, поляризатор, фазовый модулятор и другие — функциональные элементы на оптическом волокне, полученные путем его обработки. Paдиyc кольца из оптического волокна 7 см, длина волокна 580 м. Таким образом, в гироскопе устранено отражение от поверхностей различных элементов оптической системы. К тому же использование многомодового полупроводникового лазера в ка­честве источника света снижает когерентность системы и тем самым уменьшает шумы, обусловленные рассеянием Рэлея. Уменьшению этих шумов способствует и то, что система выпол­нена по принципу фазовой модуляции. В гироскопе, показанном на рис. 10, достигается разрешающая способность 0,022°/ч (рис. 11, а). При этом время интегрирования состав­ляет 1 с. Путем специальной намотки оптического волокна ос­лабляется влияние температурных колебаний, а с применением магнитного экрана и многомодового полупроводникового лазера снижается дрейф, обусловленный эффектом Керра, и уменьшаются колебания нулевой точки (рис. 11, б, 0,02°/ч, при времени интегрирования 30 с).

Рис. 11. Разрешающая способность (а) и характеристика стабилизации нулевой точки (б) волоконно-оптического гироскопа (рис.10)

Для уменьшения колебаний поляризации предложена фазовая модуляция выходного сигнала с использованием основной волны и второй гармоники, а также метод, при котором измеряются гармоники выходного сигнала светоприемника и состав­ляющая постоянного тока, затем выделяется расчетным путем флюктуационная составляющая масштабного коэффициента. Пробуют также вводить в систему оптическое волокно с сохранением поляризации, выполнять фазовый модулятор с направленными ответвителями, а остальные элементы — в виде волноводных устройств. Эксперименты с такими гироскопами дают разрешающую способность от 0,02 до нескольких граду­сов в час (время интегрирования 1 с). Для повышения разре­шающей способности и уменьшения дрейфа нуля эффективно также использование суперлюминесцентного диода, обладаю­щего низкой когерентностью (ширина волнового спектра коге­рентности 20 мкм).

Рис.12. Гироскоп со световым квазигетеродинированием

На рис. 12, а представлена система, в которой: сигнал воз­буждения фазового модулятора формируется путем интегриро­вания пилообразного напряжения и на выходе подучается сигнал квазигетеродинирования. На рис. 12, б показано изменение фазы электрического сигнала переменного тока при вращении гироскопа. Имеются и другие попытки реализации квазигетеродинного светового метода на основе фазовой модуляции. Например, система комбинируется со схемой обработки фазы (см. рис. 7), что позволяет расширить динамический диапазон и стабилизировать масштабный коэффициент, т. е. компенсировать недостатки метода фазовой модуляции. В этой системе требуется точная установка параметров формы модулирующего сигнала и трудно добиться технических характеристик, удовлетворяющих инерциальную навигацию. Путем манипуляций с формой модулирую­щего сигнала практически реализуется нулевой метод, но при этом возникает проблема со стабилизацией нулевой точки.

В любом случае система с фазовой модуляцией превосходит другие системы по разрешающей способности и стабильности нулевой точки и к тому же относительно проста. Поэтому рас­ширяются работы по миниатюризации этой системы путем соз­дания волоконных и волноводных функциональных оптических элементов, приборов интегральной оптики. В частности, западногерманская фирма SEL уже выпускает гироскопы с разрешающей способностью около 15°/ч и линейностью в пределах 1%, где для фазового модулятора используются волноводные оптические элементы. Длина волокна 100 м, радиус чувствительности катушки из оптического волокна около 3,5 см, габариты 80´80´25 мм, масса 200 г.


Страница: