Арифметические задачи как средство развития у детей логического мышления
Рефераты >> Педагогика >> Арифметические задачи как средство развития у детей логического мышления

Другая установка, разработанная Поддъяковым, представляла собой ящик с ручкой, которую можно было вращать по часовой стрелке или против нее, и в зависимости от этого в специальных окошках появлялись или исчезали картинки. В процессе экспериментирования с этим при- бором дети устанавливали зависимости между вращением ручки и сменой картинок.

Появлению неясных знаний и постановке новых вопросов способствуют также противоречивые ситуации, в которых один и тот же объект в разные моменты времени обладает противоречивыми, исключающими друг друга свойствами. Система таких ситуаций была разработана Н. Е. Вераксой. Например, специальное внутреннее устройство цилиндра позволяло ему в одних случаях катиться по наклонной плоскости вниз, а в других вверх, вызывая удивление и догадки дошкольников, дети пытались увязать эти явления между собой, активно искали причину, лежащую в основе этих противоречивых свойств странного предмета. Последовательное усложнение противоречивых ситуаций вело к развитию гибкости, динамичности детского мышления, к появлению элементов диалектики в детских рассуждениях.

Такого рода приемы, по-видимому, способствуют активности и самостоятельности мыслительной деятельности ребенка [39].

Таким образом, умственное развитие дошкольника представляет собой тесную связь и взаимодействие трех форм мышления: наглядно- действенного, наглядно-образного и логического. Наиболее эффективно связь наглядно-действенного и наглядно-образного мышления осуществляется в процессе детского экспериментирования, когда, наряду с ясными и отчетливыми знаниями, у ребенка возникают смутные, неясные знания. Взаимопереход ясных и неясных знаний ребенка, с точки зрения Н. Н. Поддъякова, составляет суть саморазвития детского мышления

1.3 Арифметическая задача как средство развития логического мышления

Впроцесс математического и общего умственного развития детей старшего дошкольного возраста существенное место занимает обучение их решению и составлению простых арифметических задач. В детском саду проводится подготовительная работа по формированию у детей утерянных навыков вычислений при сложении и вычитании однозначных чисел и быстрых устных вычислений с двузначными числами с целью подготовки их к обучению в начальной школе. Если в школе обучение вычислениям ведется при решении примеров и арифметических задач, то в практике работы дошкольных учреждений принято знакомить детей с арифметическими действиями и простейшими приемами вычисления на основе простых задач, в условии которых отражаются реальные, в основном игровые ситуации. Каждая арифметическая задача включает данные и искомые. Числа в задаче характеризуют количество конкретных групп предметов или значения величин; в структуру задачи входят условие и вопрос. В условии задачи указываются связи между данными числами, а также между данными и искомыми. Эти связи и определяют выбор арифметического действия [18].

Установив эти связи, ребенок довольно легко приходит к пониманию смысла арифметических действий и значения понятий «прибавить», «вычесть», получится, «остаётся». Решая задачи, дети отличаются умением находить зависимость величин.

Вместе с тем задачи являются одним из средств развития у детей логического мышления, смекалки, сообразительности. В работе с задачами совершенствуются умения проводить анализ и синтез, обобщать и конкретизировать, раскрывать основное, выделять главное в тексте задачи и отбрасывать всё существенное, второстепенное [35] .

«Решение задач способствует воспитанию терпения, настойчивости, воли, способствует пробуждению интереса к самому процессу поиска решения, дает возможность испытать глубокое удовлетворение, связанное с удачным решением» [21].

Более тридцати лет назад в работах известных педагогов (А. М. Леушина, 1955 г., позднее Е. А. Тарханова, 1976 г.) было показано, что дети, обучающиеся по традиционной методике решению арифметических задач, воспринимают содержание задачи как обычный рассказ или загадку, не осознают структуру задачи (условие и вопрос), а поэтому не придают значения тем числовым данным, о которых говорится в условии задачи, не понимая и смысла вопроса [18].

Незнание детьми простейшей структуры задачи вызывает серьезные затруднения при составлении ее текста. Если первая часть задачи, т. е. числовые данные, осознается быстрее, то постановка вопроса, как правило, вызывает у ребенка серьезные трудности.

Вопрос очень часто заменяется ответом. Даже к концу пребывания в подготовительной группе дети затрудняются составить текст задачи по картинкам. Назовем типичные ошибки детей.

1. Вместо задачи составляется рассказ: «На листе сидят две гусеницы, а на траве еще одна. Они все поедают».

2. Взадаче правильно воспринимается вопрос, но отсутствует фиксация числовых данных: «Шла девочка и уронила флажок. Сколько стало флажков?»

3. Вопрос заменяется ответом-решением: «Девочка держала флажки в руках. В этой два и в этой два. Если сложить, поучится четыре».

Довольно часто дети отказываются составлять задачу по картинке, так как «мы такие не решали». Их ошибки при составлении задач по картинкам позволяют сделать следующий вывод: самостоятельное составление задачи даже при наличии наглядного материала является более трудной деятельностью, чем нахождение ответа при решении готовых задачах; дети усваивают структуру задачи отрывочно, не полностью, поэтому не все её компоненты присутствуют в составленных ими задачах; воспитатели мало используют разнообразный наглядный материал при обучении составлению задач [21].

Е. А. Тарханова выясняла, понимают ли дети конкретный смысл арифметического действия сложения (вычитания) и связи между компонентами и результатом этих действий. Умеют ли выделять в задаче известное и неизвестное, а в связи с этим выбирать то или иное арифметическое действие; понимают ли дети связи между действиями сложения и вычитания. Ею установлено, что дошкольники, обучавшиеся по общепринятой методике решению простых арифметических задач, не владеют необходимым объемом званий об арифметических действиях сложения и вычитания, так как они понимают связь между практическими действиями с совокупностями и соответствующими арифметическими действиями в основном на основе ассоциации арифметического действия с жизненным действием (прибавили — прибежали, отняли — улетели и др.). Они не осознают еще математических связей между компонентами и результатом того или иного действия, так как не научились анализировать задачу, выделяя в ней известные и неизвестное [30].

Даже в тех случаях, когда дети формулировать арифметическое действие, было ясно, что они механически усвоили схему формулировки действия, не вникнув в его суть, т. е. не осознали отношений между компонентами арифметического действия как единства отношений целого в его частей. Поэтому и решали задачу привычным способом счета, не прибегая к рассуждению о связях и отношениях между компонентами. По-другому относятся к решению задач те дети, которые предварительно упражнялись в выполнении различных операций над множествами (объединение, выделение правильной части множества, дополнение, пересечение). Они понимают отношения между частью и целым, а поэтому осмысленно подходят к выбору арифметического действия при решении задач [20].


Страница: