Что такое молекулярный ламаркизм
Рефераты >> Биология >> Что такое молекулярный ламаркизм

Если иммунитет – гарант целостности, то каждый организм должен обладать тем типом иммунитета, какой нужен для поддержания данного типа целостности. Яблоня обладает простым типом иммунитета вовсе не потому, что угнетающие ее патогены просты, а потому, что ни у одного растения нет той степени целостности, какая требовала бы сложного иммунологического надзора – к примеру, отторжения трансплантированной ткани. Наоборот, млекопитающее, не способное к такому отторжению, просто не смогло бы (согласно идеологии Бернета) сформироваться в онтогенезе.

Третий вопрос: что можно, а чего нельзя сделать отбором случайных вариаций за данное время при данном числе особей? Противники дарвинизма вот уже почти полтора века заявляют, что нет никаких фактов для веры в то, что сложные приобретения произведены отбором случайных вариаций. Дарвинизм традиционно отводит все возражения оппонентов ссылкой на необозримо громадное количество организмов, живших за время эволюции. Для решения спора нужны конкретные цифры – число особей, число поколений, мера эволюционного изменения – а ни для вымерших, ни для нынеживущих организмов эти цифры получить невозможно.

Но вот для генов иммуноглобулинов некоторые значения как раз можно подсчитать вполне точно, так что от строгого «Hic Rhodus – hic salta!8 » уклониться некуда: за данное время из данного многообразия генов выбирается один, нужный для синтеза данного антитела. Работает ли тут идея Дарвина или, наоборот, нужно признать некий более сложный механизм? Другими словами, случайны ли вариации в ходе иммуногенеза? Прояснение этого вопроса принципиально для понимания и иммунитета, и эволюции.

Если бы механизм Тонегавы перебирал одну за другой все возможные комбинации фрагментов, то, как показывает расчет, он наработал бы в одном организме мыши за ее жизнь 3 млн различных антител. Но возможных антигенов – многие миллиарды, и нет никакой гарантии, что среди созданных были бы те самые антитела, какие в данное время нужны. Поэтому процесс идет иначе: выбирает одни варианты много чаще других, делает «болванку» нужного антитела и доводит ее до нужной кондиции путем гипермутагенеза. Принцип этого процесса еще не вполне понятен, но уже ясно, что для понимания придется пересмотреть многое из того, что до сих пор казалось незыблемым. Например, изменить взгляды на феномен случайности.

Так, согласно Стилу с соавторами, у каждой мыши одновременно существует всего около 10 тыс. типов антител. Именно с этого количества начинается поиск нужного варианта. Все стадии поиска авторы называют случайными, но случайность эта весьма неравномерна и ничуть не похожа на стандартные (изучаемые в теории вероятностей) явления типа бросаний игральной кости. А именно, одни варианты возникают часто, другие редко, а третьи никогда. Налицо сложная системная случайность, и нетрудно понять, почему она тут необходима: стандартная случайность дает равные вероятности вариантов, т.е. в среднем те же результаты, что и их последовательный перебор, а он был бы тут бесполезен: потребовалось бы в тысячи раз больше молекул, чем имеется.

В самом деле, у мыши одновременно наличествует всего 50 млн экземпляров лимфоцитов, способных производить антитела, причем каждый синтезирует лишь один тип антител, а деление лимфоцита занимает более 5 часов. При равномерном распределении типов антител (максимум 3 млн, и то в конце жизни) по клеткам каждый тип будет представлен всего несколькими (менее 20) экземплярами. Даже если среди них уже есть нужный для иммунного ответа, то его клонирование не сможет поспеть за размножением инфицирующих бактерий (деление у которых занимает меньше часа).

Поэтому природа отвергла случайный перебор, а избрала иную стратегию: исходное разнообразие антител поддерживается на минимальном уровне (10 тыс.), достаточном для начала поиска нужного варианта; сам же поиск включает случайную компоненту, но не является случайным перебором. Как поиск устроен, пока неизвестно, однако мы знаем, что нужный вариант находится быстро, а значит именно не перебором.

Клетка с найденным вариантом клонируется, но клонирование лимфоцитов само по себе неэффективно, поскольку идет медленнее размножения бактерий. Этим порождается четвертый вопрос, касающийся связи иммунологии с эволюцией: почему на деле скорость работы иммунной системы оказывается достаточной?

В принципе есть два пути: либо высокоаффинные лимфоциты делятся много быстрее обычных (что возможно, так как жизнь их сведена к единственному акту связывания антигена – на что мельком указывают Стил с соавторами), либо найденная генетическая информация переносится между клетками с помощью ретровирусов.

Итак, иммуногенетика предоставила прекрасный полигон для испытания эволюционных теорий, и оказалось, что при выработке иммунитета действительно происходит наследование (сохранение) приобретенных признаков в ДНК (правда, лишь на время жизни особи), причем эффективно действует отбор, но не тот, что постулировал Дарвин. Как писала Аронова, излагая Стила, «происходит положительный отбор – отбор на размножение (то, что мы называем искусственным отбором), в отличие от естественного отбора – на выживание»9 .

К сожалению, в книге «Что, если Ламарк прав?» ее авторы применили термин «положительный дарвиновский отбор», запутывающий проблему: ведь Дарвин не различал положительного и отрицательного отбора. Естествен пятый вопрос: при каких условиях включается в организме механизм отбора нужных вариантов на размножение? На него можно уверенно ответить: этот механизм включается стрессом. Вопрос и ответ выходят далеко за рамки иммунологии – стрессом запускается генетический поиск.

8. Роль генетического поиска и отбора в эволюции

Генетическим поиском (впервые в этой статье мы упомянули о нем в п.2) называется тот исключительный режим работы генетической системы, при котором производится новая генетическая информация, тогда как в обычном режиме лишь копируются тексты и поставляется информация для работы клеточных механизмов. О генетическом поиске сейчас пишут многие (так, одной из его форм является гипермутагенез, причем Э.Стил с коллегами показали, что он может идти в неделящихся клетках с помощью обратной транскрипции), правда, называя этот феномен разными терминами10 .

Физиолог А.Г. Зусмановский (Ульяновск) прямо кладет его в основу своей эволюционной концепции. О ней мне уже приходилось писать11 , а сейчас добавлю, что эта концепция являет собой самую детальную из известных мне попыток сочетать современный ламаркизм с иными воззрениями – дарвинизмом и экологическим эволюционизмом (равно как в книге Гродницкого дарвинизм сочетается с номогенезом и жоффруизмом). Достоинство таких попыток в том, что они расширяют кругозор, непозволительно урезанный за сто лет господства дарвинизма, а недостаток – в том, что все эти попытки сосредоточены, как и в случае с дарвинизмом, на объяснении, в то время как вопросы проверки и практического применения эволюционных концепций даже не ставятся.

В своей новой книге «Биоинформация и эволюция» А.Зусмановский использует все те данные генетики, о которых мы говорили выше, а кроме того, привлекает сведения из других разделов биологии. Как и все (известные мне) физиологи, детально разрабатывающие идею эволюции, он по сути является ламаркистом, так что подзаголовок книги: «правы и Ламарк, и Дарвин» (вероятно, навеянный книгой Стила с соавторами), не вполне соответствует ее содержанию – за Дарвином правота признается небольшая.


Страница: